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Abstract

The sensitivity of multiple imputation methods to deviations from their distributional assumptions

is investigated using simulations, where the parameters of scientific interest are the coefficients of a

linear regression model, and values in predictor variables are missing at random. The performance

of a newly proposed imputation method based on generalized additive models for location, scale and

shape (GAMLSS) is investigated. Although imputation methods based on predictive mean matching are

virtually unbiased, they suffer from mild to moderate under-coverage, even in the experiment where all

variables are jointly normal distributed. The GAMLSS method features better coverage than currently

available methods.

1 Introduction

In the social sciences, the parameters of scientific interest are often the regression coefficients of a linear

model (LM) which are predominantly estimated using the (OLS) estimator. When there are missing values

in predictor variables, and the probability of a missing value depends on the response variable given the

covariates, a complete case analysis (CCA) will generally lead to invalid inference.

Multiple imputation (MI; Rubin, 1987) is a statistical mode of inference to draw conclusions from incomplete

data sets. It involves generating plausible values, called imputations, for each missing datum in the data set.
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These imputations are generated by an imputation method, based on the observed part of the data set and

assumptions made by the imputer. The resulting imputed data set, which is free of missing data, is used

to estimate the parameters of scientific interest using standard methods. Unfortunately, treating observed

and imputed data on equal footing generally leads to invalid inference, since the analysis does not take into

account the additional uncertainty about the imputed data. MI is designed to solve this deficit; in contrast

with single imputation, MI requires the imputation and analysis step to be performed at least two times,

after which the resulting analyses are aggregated or ‘pooled’ to form the final inference using simple rules.

The validity of MI based inference depends on the degree to which the assumptions posited by the imputer

are met. He and Raghunathan (2009) investigated the sensitivity of several imputation methods to devia-

tions from their distributional assumptions. In a setting with three variables and missing data which are

missing completely at random (MCAR), they demonstrate that with respect to the estimation of regression

coefficients, currently used MI procedures can in fact give worse performance than complete case analyses

under seemingly innocuous deviations from standard (multivariate normality) simulation conditions.

In this paper, the sensitivity of several imputation methods is investigated when the values in the predic-

tor variables are missing at random (MAR). Additionally, the performance of a newly proposed imputation

method based on generalized additive models for location, scale and shape (GAMLSS; Rigby and Stasinopou-

los, 2005) is investigated.

2 Data Generating Process and Analysis Model

Since we are interested in the sensitivity of imputation methods to violations of assumptions about the

imputation model, we assume throughout that the true data generating process and the analysis model

coincide. In particular, we assume that the data are generated and analyzed according to the linear model

yi = α+ xT
i β + ui i = 1, . . . , N, (1)
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with β being the (k × 1) parameter vector of main interest and ui a latent independent and identically

distributed (iid) error variable with E(ui) = 0, which is independently generated from the predictors xi.

The unknown parameters will be estimated by OLS.

In the simulation study, we will generate missing values in the first predictor xi1, where the probability of

a missing value in xi1 is conditionally independent of xi1 given all other variables wi =

(
y , xT

i,−1

)T

. It is

important to note that in imputation models, xi1 becomes the response variable for which imputations, i.e.

predictions, are generated conditional on wi.

3 Imputation Methods

For reasons of scientific reproducibility, transparency, and practical relevancy, only imputation methods

implemented and made available for the open-source statistical environment and programming language R

(R Development Core Team, 2011) are considered. In particular, we tested the functions mice, version 2.10

(van Buuren and Groothuis-Oudshoorn, 2010) with imputation methods ‘linear model’ (LM) as a special

case of the class of generalized linear models (GLM) and ‘predictive mean matching’ (PMM), mi, version

0.09-14 (Gelman et al., 2010) with imputation method GLM and Hmisc version 3.9-0 using function

aregImpute (Harrell, 2010) with a PMM method based on a non linear regression imputation method

denoted as nlinPMM. The newly proposed imputation method based on GAMLSS will be described in 3.4.

3.1 Generalized linear model (GLM)

In generalized linear models (McCullagh and Nelder, 1989) the response variable x1 – for simplicity, index i

is dropped in what follows – is assumed to be generated from a (conditional) distribution in the exponential

family. The conditional expectation and variance of x1 are related to the linear predictor through the inverse
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of a link function g(·):

µ(w) := E (x1|w) = g−1(α̃+wTβ̃) (2)

σ2(w) := Var(x1|w) = v(g−1(α̃+wTβ̃)),

where v(·) is the scedastic function mapping the predicted mean to the conditional variance; its form follows

from the specified distribution and link function.

The GLM requires specification of a conditional distribution for x1 and link function g(·). If values in

x1 are MAR, then the usual assumption is that the conditional distribution of the observed x1 given w,

f(x1|w), is the same as the conditional distribution of the missing x1. However, specification of f(x1|w) is

typically based on the observed range of values of x1 and it is often implicitly assumed that the marginal

distribution f(x1) belongs to the same family as the conditional distribution f(x1|w). For example, for

continuous variables x1 often the identity link together with a conditional normal distribution is assumed to

generate imputations. However, the congruency of the conditional that needs to be modeled and the marginal

distribution which is only of interest if x1 does not dependent on all other variables, is only true in some

special cases. One example is when x1 and y are distributed bivariate normal conditional on x−1, in which

case E (x1|w) = α̃+wTβ̃ and Var(x1|w) = σ2, which corresponds to the LM method for imputing continuous

data. Note that linearity and homoscedasticity does not hold if x1 and y are not (conditionally) bivariate

normally distributed (Spanos, 1995). Another case where the marginal and the conditional distribution

families coincide is when x1 is binary (Efron, 1975). On the other hand, suppose x1 ∼ Poisson(λ). Then the

conditional distribution of x1|w can neither be a Poisson nor a Negative Binomial distribution. Instead, the

imputation model for x1 should allow for under-dispersion (for details, see de Jong, 2012).

The generalized linear model is implemented in almost all imputation software, and together with predictive

mean matching remain one of the most widely used imputation methods. A disadvantage of the method is

that the model may be too restrictive for the data at hand, hence leading to imputations that distort the

information, and thus lead to invalid inferences.
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3.2 Predictive Mean Matching (PMM)

PMM was first proposed in the seminal book of Rubin (1987) and in Little (1988). A comparison with an

imputation method based on the linear model when estimating the marginal mean and marginal distribution

of a variable with missing values was undertaken in a simulation study by Schenker and Welsh (1988). None

of the articles mentioned above derived the large-sample properties of the method, and only Schenker and

Welsh (1988) tested the method empirically, although with respect to marginal statistics. Despite this, the

method has been found to work well in simulation studies (e.g., Schenker and Taylor, 1996; Andridge and

Little, 2010; Yu, Burton and Rivero-Arias, 2007) and is currently adopted as the standard method in the

widely used mice package for multiple imputation inference with respect to β.

PMM can be seen as a type of random k-nearest-neighbor method. Given a metric d : R2k → R and a query

point for which x1 is missing, the p nearest neighbors of the query point are sought to obtain a set of p

donor values from which an imputation is randomly drawn. What differentiates PMM from nearest neighbor

methods is the metric used, which is defined in terms of the linear predictor of the reverse linear regression:

dPMM (a,b) = |aβ̇ − bβ̇| = |(a− b)β̇|, (3)

where a and b are realizations of w, and β̇ are (approximated) draws from the posterior distribution of the

parameters of the reverse linear regression, i.e. the regression of x1 on w. Since matching is done using the

linear predictor and imputed values are ‘live’ or observed, the method can also be used for the imputation

of non-continuous data without the need for iterative maximum likelihood fitting.

Problems may occur when regions of the sample space are sparsely populated, possibly due to the missing

data mechanism. Because of the low number of observed values of x1, the same donors are considered for

each missing value, which might result in underestimation of the variance of the multiple imputation based

estimator of β. Further, PMM is unable to extrapolate correctly from observed values to truncated regions,

leading to a biased estimate of the regression slope. Although often heralded for imputing ‘realistic’ values,

the resulting inability to properly inter- and extrapolate can be a serious weakness of the method, especially

when the missing data mechanism is selective, for example, if it deletes observations in the tails of the
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distribution.

3.3 PMM Based on Nonlinear Regression (nlinPMM)

The function aregImpute in the package Hmisc is another readily available alternative for end users. The

corresponding imputation method has not been published: there are no large-sample results available. The

primary source of information, apart from the program code itself, is the documentation contained in Har-

rell (2010). The imputation method is similar to PMM, and allows for nonlinear transformation in the

construction of the matching metric.

First, the algorithm finds those transformations of predictors fj(w) which lead to optimal prediction of a

linear transformation of the observed values of the variable to be imputed, x1, in the following additive

model:

c̃+ x1d̃ = α̃+

k∑
j=1

fj(wj)β̃j + ν, (4)

where the fj(·) are restricted cubic spline basis functions of the predictor variables wj , j = 1, . . . , k with a

user specified fixed number of knots. After estimation of (4), a variant of PMM using weighted probability

sampling of donor values is used to generate imputations, where the weights are inversely proportional to

the following distance function:

dareg(a,b) =

k∑
j=1

|(fj(aj)− fj(bj))β̃j |, (5)

and where a = (a1, . . . , ak)
T and b = (b1, . . . , bk)

T are realizations of w. The method uses the simple

non-parametric bootstrap to approximate draws from the Bayesian posterior distribution of the parameters

of the imputation model. Since the final imputed values are produced using PMM, aregImpute can also be

used for the imputation of non-continuous data and will be denoted as nlinPMM in what follows.

3.4 Generalized Additive Models for Location, Scale and Shape (GAMLSS)

In the literature, several methods are available which jointly model the conditional expectation and condi-

tional variance, and iteratively estimate both using nonparametric techniques. For example, Yu and Jones
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(2004) propose a local linear regression method with estimators based on the local normal likelihood. Rigby

and Stasinopoulos (1996) propose a similar idea using semi-parametric additive models based on the penal-

ized normal likelihood. Both approaches involve first fitting the conditional mean using local linear regression

or a smoother while holding the conditional variance fixed, and then fitting the conditional variance using

local linear regression or smoother while holding the conditional mean fixed. Rigby and Stasinopoulos (2005)

propose the GAMLSS model, which allows for relaxation of the normality assumption and the specification

of arbitrary families of conditional distributions for x1, even ones outside of the exponential family.

3.4.1 The Imputation Model

In the GAMLSS imputation method, at least the mean and dispersion parameters of a specified distribution

D are modeled using additive terms:

µ =g−1
1 (α̃(1) +

k∑
j=1

h1j(wj)) (6)

σ =g−1
2 (α̃(2) +

k∑
j=1

h2j(wj)),

where g−1
p (·) are inverse monotonic link functions which relate the parameters of the conditional distribution

D to the predictor variables wj , j = 1, . . . , k, and hpj represents the type of effect of the jth covariate (Rigby

and Stasinopoulos 1996, 2005). This distribution defaults to normal for continuous data, but alternatives

can be chosen from a a broad range of alternatives. This enables users in combination with a suitable link

function to restrict the drawn imputations to a certain range by specifying for example a truncated normal

distribution, and allows for easy generalization of the method to discrete and count data.

If besides location and scale D has up to two shape parameters {ν, τ} and the sample size is relatively large,

we can extend (6) by modeling these parameters additively:

ν =g−1
3 (α̃(3) +

k∑
j=1

h3j(wj)) (7)

τ =g−1
4 (α̃(4) +

k∑
j=1

h4j(wj)).
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Since this extended model portrays the conditional distribution f(x1|w) more accurately due to the fact

that instead of only two parameters, i.e. mean and spread, four parameters, i.e., in addition, skewness and

kurtosis, are modeled. Hence, the resulting imputations may be of higher quality compared to those whose

imputation model solely consists of (6).

3.4.2 Implementation

The R implementation of the imputation method uses the gamlss package (Rigby and Stasinopoulos, 2005) to

fit model (6). Rigby and Stasinopoulos (2005) provide a description of the algorithms used by this package.

Implemented smoothing terms hpj include cubic smoothing splines, penalized splines, and local regression.

In principle, any smoother can be used; however, penalized B-splines Eilers and Marx (1996) proved to be

computationally the most stable. More specifically, the smoother used in the simulation studies in Section

4 consists of a penalized B-spline with 20 knots, a piecewise polynomial of the second degree with a second

order penalty, and automatic selection of the smoothing parameter using the Local Maximum Likelihood

criterion. For high amounts of smoothing, the fit of this smoother approaches linearity.

Let obs denote the fully observed cases, and mis be the cases where x1 is missing. Further, let x1,obs be the

vector of observed x1,i’s, Wobs the matrix of all wi’s for which xi is observed and, correspondingly, let x1,mis

be the vector of missing x1,i’s and Wmis be the matrix of wi’s for which xi is missing.

Unfortunately, the package gamlss does not support Bayesian inference. Therefore, it is impossible to

obtain multiple imputations by drawing from the posterior predictive distribution. To incorporate the added

variance due to non-response into the multiple imputation inference, the posterior predictive distribution of

the missing values is approximated by the bootstrap predictive distribution (Harris, 1989):

f∗(x1,mis|x1,obs,W) =

ˆ
f(x1,mis|η̃,Wmis) (8)

× f(η̃|η̂(x1,obs,Wobs))dη̃,

where η̃ denote the possible values of the imputation model parameters, η̂(x1,obs,Wobs) is the estimator of

said parameters, and f(η̃|η̂(x1,obs,Wobs) is the sampling distribution of the imputation parameters evaluated
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Algorithm 1 GAMLSS imputation
1. Fit Model (6), possibly extended to (7), using the observed data {x1,obs,Wobs}. This is the estimated

model used to resample x1,obs in step (2).

2. Resample x1,obs as follows:

x∗
1,obs ∼ D(µ̂, σ̂) or x∗

1,obs ∼ D(µ̂, σ̂, ν̂, τ̂)

Define a bootstrap sample B :=
{
x∗
1,obs,Wobs

}
3. Refit model (6) or (6) and (7) using B. Draw nmis imputations for x1,mis as follows:

x̃1,mis ∼ D(µ̇, σ̇) or x̃1,mis ∼ D(µ̇, σ̇, ν̇, τ̇)

4. Repeat step (2) and (3) m independent times, where m is the number of imputations.

at the estimated values of the parameters. f(η̃|η̂(x1,obs,Wobs)) is simulated by performing the parametric

bootstrap, and acts as a surrogate for the posterior distribution of the parameters of the imputation model.

A full description of the algorithm is given in Algorithm 1. An advantage compared to a fully Bayesian

approach is that no prior information – which is typically lacking – needs to be specified.

Even though the implementation of penalized smoothing splines in the package gamlss is considered to be the

most stable, in some cases Algorithm 1 may fail to converge. This is frequently traced to the algorithm which

selects the smoothing parameter. The implementation of the imputation method catches such an occurrence,

and then falls back to a cubic smoothing spline (function cs in the gamlss package) with a fixed smoothing

parameter consisting of one additional degrees of freedom on top of the linear term, which indicates a very

large amount of smoothing. Even with these measures in place, GAMLSS may fail to converge in some

scenarios, especially for low sample sizes, as will become apparent in the simulation studies.

A difference between aregImpute and the proposed imputation method is that the former fixes the number

of knots of the transformations fj to a default fixed value, while GAMLSS optimizes the smoothing pa-

rameter of hij using cross-validation; after all, the performance of a smoother is extremely sensitive to the
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appropriateness of the chosen smoothing parameter. Also, aregImpute draws by default imputations from

the observed values using PMM, while GAMLSS samples imputations from D using the estimated parameter

values

3.4.3 Discussion of Assumptions

When the IDGP contains many predictors, a problem that non-parametric smoothers face is the ‘curse of

dimensionality’, where the volume of predictor space grows so fast that the available data becomes sparse;

this generally leads to an explosion of the variance of the non-parametric estimator, and computational

problems. One strategy to cope with the curse is to force predictors to enter the model additively as in

(6). Although the additivity assumption allows for the incorporation of a moderate number of predictors

in the imputation model, it cannot capture the effects of potential interactions between the predictors of

the imputations model. When interaction terms need to be included in the model, they should be explicitly

specified; even if the direct regression is additive, it is generally unknown if the functional relationship

relating the predictors of the imputation method to the parameters of the specified conditional distribution

is also additive. Another possible limitation is that the functions hij(·) to be estimated in (6) and (7) should

be sufficiently smooth; functions with pronounced discontinuities might lead to imputations that cannot

adequately reflect such jumps. Finally, estimating arbitrary smooth functions using flexible non-parametric

estimators requires more data than required for a linear regression, and the GAMLSS imputation method

might not be appropriate for small samples.

4 Simulation Experiments

First we will empirically investigate the performance of all the imputation methods described in Section 3 in

the context of a simple linear regression model following (1) with a single predictor variable x with missing

values. The true parameter values are α = 0 and β = 1; since the intercept is usually of no scientific interest,

only the regression slope β is reported in the results. It should be emphasized that the predictor x and
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response variable y swap roles in the imputation model.

Further note that constraining the scope of the experiments to a single variable with missing values allows

for the isolation of defects in the imputation methods from possible confounding issues stemming from the

fully conditional specification framework (c.f. van Buuren, Brand, Groothuis-Oudshoorn and Rubin, 2006)

in which the imputation methods are ultimately embedded. A further constraint is the limitation to a single

predictor variable in the imputation model. However, obtaining acceptable performance in this basic setting

is not a trivial task, and acceptable performance is a prerequisite for more involved scenarios. Further, this

basic scenario simplifies experimenting with the distribution of the predictor x and other parameters of the

simulation, because computational cost is less high than with multiple predictors. Finally, two simulation

studies are performed with multiple predictor variables.

The three simulation parameters which are systematically varied are the distribution of x, the coefficient of

determination R2, and sample size N . All studies have 1000 replications and m = 10 imputations, and a

normal distribution for the errors of the complete data model (1). A very important factor is the distribution

of the predictor x. The following continuous densities are considered: Standard normal, skew-normal, which

generalizes the normal distribution by introducing an additional skewness parameter, which is set here to

κ = 5 leading to a positively skewed distribution, uniform on [0, 1], squared uniform or standard beta

distribution with shape parameters 0.5 and 1, and the T distribution with three degrees of freedom as an

example of a heavy-tailed distribution. Further, as an example of a non-continuous distribution the Poisson

distribution with λ = 2 is considered. The study is performed for all combinations of the distributions listed

above and the factor levels R2 ∈ {.25, .50, .75} and N ∈ {200, 500, 1000}. Since the conclusions from the

simulation experiment are not affected if the results for N = 500 or R2 = 0.5 are shown, they are omitted

in the tables, but are available upon request.

For all studies, the following missing data mechanism is imposed:

p(s|y) =


(ϕ1)

1−s(1− ϕ1)
s if y < ỹ

(ϕ2)
1−s(1− ϕ2)

s if y = ỹ,

(9)
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where ỹ is the sample median. Setting ϕ1 = .1, ϕ2 = .7 results in 40% missing data in x, where the chance

of a missing datum in x is .1 when the corresponding value of y is smaller than the sample median of y, and

.7 when it is larger than the median; note that this missing data mechanism is MAR (Rubin, 1987). While

holding the missing data mechanism constant at (9), the coefficient of determination determines the extent

to which the missing values are MAR, with R2 approaching 0 implying the missing data are in fact MCAR

and evenly spread, and a high value of R2 giving rise to a strongly systematic missing data mechanism with

the potential of thinning out selected regions of the sample space. To replicate parts of the study of He and

Raghunathan (2009), two simulation studies are conducted where 40% of the values of x1 are MCAR, and

f(x) is the normal or the Beta distribution; all other simulation parameters are equal to those in the MAR

experiments.

The results of the simulation study are reported in tables which all share common elements. The columns

identify the mode of inference, where COM stands for the complete data analysis; this is the analysis

on the complete data, before any cases are deleted, and should be taken as the golden standard. CCA

denotes complete case analysis, which represents the analysis on the completely observed cases only. All

other entries are multiple imputation inferences using the indicated imputation method (LM, GLM, PMM,

nlinPMM, GAMLSS). Further, the output of the package mi is suppressed in most Tables since it performs

very similar to mice.

All imputation methods are assessed on four criteria. (1) Number of simulations which failed due to compu-

tational problems (FAIL), (2) bias, given as the difference of the true parameter value, which is 1, and the

mean of the estimates (m(β̂)) over 1000 simulations, (3) the mean of the estimated standard errors (m(ŜD))

and (4) coverage (COVER), which is equal to the proportion of replications where the true parameter lays

inside the 95% confidence interval as produced by the multiple imputation inference.

Two additional simulation experiments were conducted with four jointly independent normally distributed

predictor variables, each having unit variance and associated regression coefficients β =
[
1,
√

2/3,
√
2/3,

√
2/3
]
,

and unit residual variance. Note that also in these experiments, only x1 is afflicted by missing values. Fur-
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ther, R2 is fixed at .75; the regression coefficients, residual variance, and covariance matrix of the predictor

are chosen such that the amount of variance explained by x1 equals R2
x1

= .50, which is canonical in the sense

that it is the middle value of the set of coefficients of determination {.25, .50, .75} in the simple experiments

with only x1.

For the studies with multiple predictors, the following missing data mechanism is imposed:

p(s|lp) =


(ϕ1)

1−s(1− ϕ1)
s if lp < l̃p

(ϕ2)
1−s(1− ϕ2)

s if lp = l̃p,

(10)

where

lp = −.4x2 − .4x3 − .4x4 + .50y (11)

is an approximation of the reverse linear predictor, and l̃p is the sample median of lp. Again, setting ϕ1 = .1

and ϕ2 = .7 results in 40% missing data in x1.

5 Results

5.1 Normal

The first simulation scenario features a normal distribution for the predictor variable x, which implies that x

and y are distributed bivariate normal; this is a standard simulation condition for assessing the performance

of imputation methods. Results of the simulation study are presented in Table 1. Since the missing data are

MAR, CCA is biased, which leads to under-coverage. The under-coverage of CCA seems unaffected by the

coefficient of determination, but becomes worse with increasing sample size.

Since x and y are distributed bivariate normal, both the direct and reverse regression are linear, and the

linear model (LM) method is expected to be perfectly adequate; in fact, when the missing values are MAR,

the use of LM is only warranted when the observed data are distributed according to a multivariate normal

distribution. This is confirmed in the simulation results, where the LM based estimates are virtually unbiased
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and have nominal coverage. As is to be expected, the aggregated standard errors are larger than those of

the golden standard set by the complete data analysis. This loss of precision is due to the missing values;

multiple imputation does not make up data.

The adopted missing data mechanism does not truncate the sample space, but thins out the sample space for

large values of y. Even in this case PMM suffers from mild to moderate under-coverage, with coverage rates

ranging between .892 and .915. The standard errors are slightly smaller than those of the LM imputation

method, which is counter-intuitive since PMM is more flexible and uses less information, i.e. that the errors

are normally distributed, external to the data than the LM method. With respect to bias, PMM performs

roughly equal to LM, which means very limited empirical bias. The unsatisfactory performance of PMM did

not arise in the simulation studies of He and Raghunathan (2009), probably because they simulated a MCAR

missing data mechanism which does not thin out the sample space as selectively as missing mechanism (9).

The performance of nlinPMM is comparable or slightly worse than that of PMM, with coverages ranging

between .866 (R2 = 0.5) and .916 (R2 = 0.5). A possible explanation is that nlinPMM also performs a

predictive mean matching step, and thereby suffers from the same problem as the mice implementation of

the PMM algorithm. When the imputation model features multiple predictors and with a R2
x1

= .50, the

coverages of PMM for β1 range from .892 to .904, and the coverages of nlinPMM range from .909 to .924;

although the coverages are slightly better than in the single predictor study, they are still clearly below the

nominal level.

GAMLSS is expected to give unbiased results, albeit with some loss of efficiency compared to LM. The

conditional distribution D is specified to be normal. Looking at the results in Table 1, bias is comparable to

that of LM and thus negligible, although the standard errors are moderately larger than those of LM; this

is the price to pay for the greater flexibility of the model. However, for larger sample sizes, the difference in

efficiency diminishes. GAMLSS unfortunately fails to converge in a total of three cases for the lowest sample

size condition; however, in the larger sample conditions no problems arise.

Lastly, the performance of GAMLSS in the study with multiple predictors (not shown, but available upon
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request) is comparable to the study with a single predictor; this indicates that, as expected, if the additivity

assumption is correct, GAMLSS seems to successfully circumvents the curse of dimensionality.

Include Table 1 here

5.2 Skew-Normal and Uniform

The second and third simulation study feature a marginal skew-normal and uniform distribution for the

predictor variable x, respectively. It can be shown that the reverse conditional expectation of x given y is

non-linear, and the conditional variance is heteroscedastic; thus, the LM method is expected to fail. Indeed,

as the results in Table 2 indicate, the LM method breaks down with coverages ranging between 0.455 and

0.918. The under-coverage seems primarily due to substantial empirical biases ranging from .051 to .076

(R2 = 0.5), which are comparable to those of the CCA. Although PMM and nlinPMM have negligible

bias, their coverage rates are equal to those of the normal study, and remain to show mild to moderate

under-coverage. The performance of PMM and nlinPMM continues to be substandard irrespective of the

conditional distribution of x, and will not be addressed in the discussion of the remaining studies with a

single predictor.

For the GAMLSS approach, the conditional distribution D of x is specified as normal. Since the conditional

mean is not restricted to be a linear function of the predictors, and the conditional variance is not restricted

to be constant, the GAMLSS approach is expected to offer robust performance in the skew-normal scenario.

Generally speaking, these expectations are fulfilled: only the case with n = 200 and R2 = 0.75 features slight

undercoverage. Comparison of estimated standard error size is meaningless since only GAMLSS features

adequate coverage.

A simulation experiment has also been conducted with x1 distributed skew-normal with a standardized third

cumulant of .85, and x−1 distributed standard normal, with all predictors jointly independent. Again in this

study, the results with respect to β1 are similar to the results with just one predictor x1. Further, GAMLSS
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performs comparable to the study with a single predictor. Thus, the results are omitted but are available

upon request.

Include Table 2 here

In the case of x having a standard uniform distribution, it may be desirable to restrict the imputed values

to lay between zero and one; this can be accomplished by letting D be the (Generalized) Beta distribution.

Finally, we test the normal distribution, denoted by GAMLSS (normal) in the table, even though this choice

of D leads to the imputation of potentially unrealistic values.

Include Table 3 here

The results of the GAMLSS imputation method in Table 3 when x has the uniform distribution indicate

that imputing under the Normal and Generalized Beta distribution gives comparable and adequate results.

Imputation under the normal model (LM) also gives negligible empirical bias, demonstrating that, apart from

the first two moments, imputations for x do not need to match the exact shape of the conditional distribution

f(x|y). Finally, the good performance of imputations under the Generalized Beta distribution demonstrates

that the goals of generating plausible imputations and consistent imputations are not necessarily incompatible

with each other.

5.3 Uniform Squared (Beta)

This simulation study can be interpreted as an assessment of the transform, then impute strategy as described

in von Hippel (2009), where the predictor x is created by taking the square of the original predictor variable

z, and where z is standard uniformly distributed. In this case, the conditional expectation of x given y

deviates significantly from linearity; moreover, the skewness of the conditional distribution of x given y

leads to the occurrence of outliers in x for large values of y. Arguably, this scenario features a conditional

distribution whose features are difficult to estimate, with the attrition of the missing data mechanism (9)
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further exacerbating the situation. Given that the values of x lay in the (0, 1) interval, one might want to

impute only realistic values; therefore, D is chosen to be a generalized beta distribution as in Section 5.2.

Include Table 4 here

Unfortunately, GAMLSS with a generalized Beta distribution breaks down for high values of the coefficient of

determination. When R2 = .75 there is moderate undercoverage, which becomes worse for larger sample sizes.

Apparently, for smaller sample sizes, the larger standard errors camouflage the empirical bias. The results

might indicate that for this scenario, imputation model (6) is not adequate. Performance might improve with

a varying bandwidth; unfortunately, this feature has not been implemented yet in the GAMLSS package.

Despite producing potential unrealistic values in the form of negative imputations, GAMLSS with a normal

distribution is on target, with the empirical bias being quite acceptable.

5.4 Student’s T

The fourth simulation study feature a marginal T distribution with three degrees of freedom for the predictor

variable x. For the GAMLSS method, D is specified to be normal. In the simulation study of He and

Raghunathan (2009), all tested imputation methods broke down when the distribution of x was strongly

heavy tailed. As the results in Table 5 indicate, this is also true for the GAMLSS method, which features

biases which are systematically bigger than the LM method, and coverage rates ranging between .893 (R2 =

0.5) and .943. The results of this study suggest that the GAMLSS method, despite its flexibility, is unsuitable

for imputation when x has a heavy tailed distributions. While of all methods the coverage rates of GAMLSS

are closest to the nominal level, this seems largely due to inflated standard errors.

Include Table 5 here
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5.5 Poisson

The Poisson simulation study features the mi package, which offers an implementation of the generalized

linear model (GLM) method where the conditional distribution of x is specified to be a Poisson distribution

(POISSON). It can be shown that if x follows a Poisson distribution, then the true conditional distribution

of f(x|y) is an under-dispersed distribution (de Jong, 2012); using Poisson regression is therefore expected to

fail. A polytomous regression model may also be adopted to generate imputations for count data (POLYT);

in this study we used mice which provides a GLM where x has a conditional categorical distribution. Because

GAMLSS only implements a Poisson distribution and overdispersed count distributions, D is choosen to be

Normal, which results in the imputation of ‘unrealistic’ values.

As expected, the results in Table 6 show very low coverages for the polytomous and Poisson regression

methods. In contrast, the GAMLSS method seems to offer good performance, although the empirical bias

for the case when R2 = .25 is somewhat disquieting.

Include Table 6 here

6 Conclusion

The LM and GLM are parametric regression models and pose restrictions on the functional form of the

conditional mean and variance of the variable with missing values. These restrictions, if not correct, may

lead to inconsistent estimation of the parameters of scientific interest, and ultimately to invalid multiple

imputation inferences; therefore, it is expected that imputation methods which jointly estimate the condi-

tional expectation and conditional variance using non-parametric techniques offer better performance. The

proposed GAMLSS method models parameters of a specified distribution D using additive smoother terms,

which in combination with a suitable link allows for easy generalization of the method to discrete and count

data.

This paper reports the results of a simulation study where the data generating process of scientific interest
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assumed by the analyst consists of a linear regression model with missing values in a single predictor variable,

and a strongly systematic MAR mechanism. Experimental conditions include the marginal distribution of

the predictor with missing values, the coefficient of determination, and sample size. Although the PMM and

nlinPMM imputation methods are virtually unbiased, they suffer from mild to moderate under-coverage in

all conducted experiments, including the experiment where all variables are jointly normal distributed. The

LM method performs excellent when the variables are jointly normal distributed, but breaks down in most

cases when the distribution of the predictor deviates from normality, and the reverse regression becomes

non-linear; performance is worst when the coefficient of determination is high. In contrast, the GAMLSS

method features better coverage than currently available methods.

In this simulation study we restricted attention to models with one dependent and one independent variable.

However, as mentioned in sections 4 and 5.1 we also ran simulations with four covariates. The results of

this limited study – in the scenario considered, all the variables are normally distributed – imply that the

proposed GAMLSS method works also well in larger models.

Thus, based on the simulation results, we recommend to use the GAMLSS imputation method if there is

doubt with respect to the parametric imputation models, which may even be the case in standard situations,

like imputing a continuous variable that potentially may be used as a covariate in an analysis model. In

addition, GAMLSS provides a suitable alternative to PMM in situations where PMM is problematic, e.g.

when the number of potential donors is small, or when imputations should extend beyond the data values,

as is censoring. Further, it is recommended to impute all continuous variables using the normal distribu-

tion (without rounding), even if this means that the resulting imputations are unrealistic if the GAMLSS

imputation method is used.
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Table 1: Normal distribution

COM CCA LM PMM nlinPMM GAMLSS

N = 200

R2 = 0.25

m(β̂)

m(ŜD)

COVER
FAIL

0.996 0.865 0.980 0.974 0.974 0.999
0.123 0.152 0.155 0.154 0.141 0.175
0.949 0.833 0.949 0.896 0.882 0.950

0 0 0 0 0 2

N = 200

R2 = 0.75

m(β̂)

m(ŜD)

COVER
FAIL

1.001 0.956 1.001 1.011 0.994 1.006
0.041 0.056 0.051 0.049 0.048 0.062
0.964 0.867 0.950 0.892 0.868 0.948

0 0 0 0 0 0

N = 1000

R2 = 0.25

m(β̂)

m(ŜD)

COVER
FAIL

0.999 0.871 0.994 0.995 0.993 1.000
0.055 0.068 0.068 0.066 0.062 0.072
0.947 0.525 0.956 0.910 0.896 0.950

0 0 0 0 0 0

N = 1000

R2 = 0.75

m(β̂)

m(ŜD)

COVER
FAIL

1.000 0.955 1.000 1.003 1.000 1.002
0.018 0.025 0.023 0.022 0.021 0.024
0.952 0.544 0.944 0.915 0.901 0.944

0 0 0 0 0 0
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Table 2: Skew - Normal distribution

COM CCA LM PMM nlinPMM GAMLSS

N = 200

R2 = 0.25

m(β̂)

m(ŜD)

COVER
FAIL

1.002 0.924 1.058 0.985 0.975 0.978
0.124 0.164 0.170 0.159 0.143 0.202
0.940 0.904 0.918 0.907 0.865 0.953

0 0 0 0 0 0

N = 200

R2 = 0.75

m(β̂)

m(ŜD)

COVER
FAIL

0.999 0.974 1.051 1.019 0.988 1.020
0.041 0.060 0.055 0.054 0.051 0.069
0.949 0.925 0.853 0.878 0.830 0.917

0 0 0 0 0 1

N = 1000

R2 = 0.25

m(β̂)

m(ŜD)

COVER
FAIL

1.002 0.924 1.070 0.999 0.996 0.984
0.055 0.073 0.074 0.065 0.062 0.085
0.954 0.796 0.835 0.891 0.883 0.952

0 0 0 0 0 0

N = 1000

R2 = 0.75

m(β̂)

m(ŜD)

COVER
FAIL

1.000 0.977 1.052 1.006 1.003 1.007
0.018 0.026 0.024 0.024 0.022 0.027
0.957 0.841 0.455 0.889 0.885 0.946

0 0 0 0 0 0
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Table 3: Uniform distribution

COM CCA LM PMM nlinPMM GAMLSS
(Normal)

GAMLSS
(Gen. Beta)

N = 200

R2 = 0.25

m(β̂)

m(ŜD)

COVER
FAIL

1.004 0.872 0.989 0.990 0.987 1.015 1.004
0.123 0.153 0.156 0.153 0.138 0.163 0.165
0.959 0.856 0.958 0.920 0.879 0.943 0.949

0 0 0 0 0 0 0

N = 200

R2 = 0.75

m(β̂)

m(ŜD)

COVER
FAIL

1.001 0.956 1.006 1.004 0.997 1.018 0.997
0.041 0.056 0.052 0.046 0.045 0.053 0.050
0.953 0.881 0.957 0.921 0.906 0.940 0.954

0 0 0 0 0 0 2

N = 1000

R2 = 0.25

m(β̂)

m(ŜD)

COVER
FAIL

0.999 0.869 0.992 0.997 0.991 0.998 0.990
0.055 0.068 0.068 0.067 0.062 0.071 0.071
0.959 0.517 0.959 0.924 0.903 0.959 0.953

0 0 0 0 0 0 0

N = 1000

R2 = 0.75

m(β̂)

m(ŜD)

COVER
FAIL

1.000 0.958 1.008 1.002 1.001 1.008 0.994
0.018 0.025 0.023 0.020 0.020 0.023 0.022
0.933 0.588 0.933 0.920 0.914 0.948 0.941

0 0 0 0 0 0 0
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Table 4: Uniform Squared (Beta) distribution

COM CCA LM PMM nlinPMM GAMLSS
(Normal)

GAMLSS
(Gen. Beta)

N = 200

R2 = 0.25

m(β̂)

m(ŜD)

COVER
FAIL

0.990 0.907 1.039 0.964 0.960 0.972 0.976
0.123 0.162 0.167 0.155 0.139 0.190 0.168
0.942 0.876 0.925 0.902 0.854 0.959 0.960

0 0 0 0 0 0 3

N = 200

R2 = 0.75

m(β̂)

m(ŜD)

COVER
FAIL

0.997 0.992 1.069 1.003 0.993 1.025 0.983
0.041 0.060 0.056 0.049 0.047 0.060 0.057
0.943 0.932 0.779 0.889 0.845 0.944 0.934

0 0 0 0 0 0 0

N = 1000

R2 = 0.25

m(β̂)

m(ŜD)

COVER
FAIL

0.998 0.918 1.059 0.994 0.990 0.993 0.977
0.055 0.072 0.073 0.067 0.061 0.080 0.072
0.956 0.785 0.866 0.919 0.905 0.940 0.946

0 0 0 0 0 0 1

N = 1000

R2 = 0.75

m(β̂)

m(ŜD)

COVER
FAIL

1.000 0.994 1.071 1.000 1.000 1.011 0.980
0.018 0.027 0.025 0.022 0.021 0.026 0.024
0.947 0.938 0.174 0.905 0.897 0.948 0.860

0 0 0 0 0 0 0
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Table 5: T distribution

COM CCA LM PMM nlinPMM GAMLSS

N = 200

R2 = 0.25

m(β̂)

m(ŜD)

COVER
FAIL

1.001 0.892 1.012 0.992 0.962 1.032
0.129 0.161 0.166 0.168 0.168 0.206
0.947 0.892 0.933 0.935 0.914 0.939

0 0 0 0 0 0

N = 200

R2 = 0.75

m(β̂)

m(ŜD)

COVER
FAIL

1.000 0.950 0.999 1.032 0.986 1.017
0.044 0.058 0.054 0.060 0.060 0.085
0.950 0.866 0.888 0.885 0.896 0.911

0 0 0 0 0 1

N = 1000

R2 = 0.25

m(β̂)

m(ŜD)

COVER
FAIL

1.000 0.893 1.013 1.000 0.984 1.013
0.056 0.069 0.070 0.069 0.070 0.097
0.950 0.649 0.912 0.878 0.891 0.940

0 0 0 0 0 8

N = 1000

R2 = 0.75

m(β̂)

m(ŜD)

COVER
FAIL

0.999 0.955 0.995 1.023 0.998 1.003
0.019 0.025 0.023 0.025 0.024 0.042
0.945 0.546 0.812 0.797 0.890 0.923

0 0 0 0 0 10
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Table 6: Poisson distribution

COM CCA POLYT PMM nlinPMM POISSON GAMLSS

N = 200

R2 = 0.25

m(β̂)

m(ŜD)

COVER
FAIL

0.998 0.907 0.547 0.976 0.966 0.860 0.974
0.123 0.162 0.181 0.157 0.143 0.146 0.200
0.962 0.896 0.218 0.915 0.855 0.933 0.973

0 0 0 0 0 0 0

N = 200

R2 = 0.75

m(β̂)

m(ŜD)

COVER
FAIL

1.000 0.965 0.583 1.020 0.991 0.629 1.015
0.041 0.059 0.108 0.053 0.051 0.081 0.068
0.935 0.885 0.002 0.872 0.838 0.003 0.924

0 0 0 0 0 0 0

N = 1000

R2 = 0.25

m(β̂)

m(ŜD)

COVER
FAIL

0.999 0.911 0.546 0.995 0.992 0.877 0.980
0.055 0.072 0.080 0.066 0.062 0.063 0.082
0.948 0.757 0.000 0.887 0.880 0.530 0.956

0 0 0 0 0 0 0

N = 1000

R2 = 0.75

m(β̂)

m(ŜD)

COVER
FAIL

1.001 0.969 0.581 1.006 1.002 0.635 1.005
0.018 0.026 0.048 0.023 0.022 0.038 0.026
0.952 0.776 0.000 0.892 0.873 0.000 0.944

0 0 0 0 0 0 0
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