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Abstract

Empirical data analyses often require complete data sets. In the case of incom-
pletely observed data sets therefore methods are attractive that generate plausible
values (imputations) for the unobserved data. The idea is to then analyse the com-
pleted data set in an easy way, e.g. using publicly available software. Thus, various
imputation methods have been proposed and evaluated. Popular measures used for
evaluating these methods are based on distances between true and imputed values
applied in simulation studies. In this paper we show through a theoretical example
and a simulation study that these measures may be misleading: A small value of a
measure which is a function of the distance between imputed and true values does
not imply that inferences based on the imputed data set is somehow close to the
(valid) inferences based on the complete data set without missing values. Hence,
we propose to compare imputation methods with respect to their aptitude to enable
valid inferences based on imputed data sets.
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1 Introduction

Empirical data sets are often affected by missing data. Examples are microarray gene

expression, other biological or medical laboratory or epidemiological data (e.g., Burgette

and Reiter, 2010; Kshirsagar, Carbonell and Klein-Seetharaman, 2012; Moorthy, Mohamad

and Deris, 2014; Nguyen, Wang and Carroll, 2004; Troyanskaya et al., 2001; Waljee et al.,

2013), data from wireless sensor networks (e.g., Pan and Li, 2010) or traffic flow data

(Li, Li and Li, 2014). Since downstream analyses usually require complete data sets,

various imputation methods have been developed to replace unobserved by estimated values

(imputations). Many of these methods are proposed based on comparisons using functions

of squared distances between true and imputed values or the absolute values of these

distances. Comparisons are usually carried out in simulation studies in which either data

sets including missingness patterns are simulated or, given real data sets, only missing data

are generated (internal validation; e.g., Burgette and Reiter, 2010; Kim, Golub and Park,

2005; Ingsrisawang and Potawee, 2012; Li, Li and Li, 2014; Malarvizhi and Thanamani,

2013; Moorthy, Mohamad and Deris, 2014; Myrtveit, Stensrud and Olsson, 2001; Nguyen,

Wang and Carroll, 2004; Pan and Li, 2010; Sehgal, Gondal and Dooley, 2005; Troyanskaya

et al., 2001; Waljee et al., 2013; Yoon, Lee and Park, 2007). Some of these methods are

made available to researchers in public use software packages (e.g., Templ, Kowarik and

Filzmoser, 2011).

In this paper we will show that these statistics to evaluate the performance may be

misleading: From the fact that a measure is zero if all the imputed values are equal to the

true but unobserved values, it does not follow that the smaller the value of such a measure,

the ‘closer’ the inference based on the imputed data set to the (valid) inference based on the

complete data set without missing values. Thus, a method characterized by a smaller value

of such a measure is not necessarily superior to a method with a larger value with respect

to the statistical properties of subsequent analyses. Moreover, these measures are usually

calculated in simulations. But without further theoretical justification, the implications

of corresponding studies using these measures are valid only for a very restricted number

of situations: Statements about differences of true and imputed values in the realized

situations.
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The weakness of measures based on differences between true and imputed values will

be shown by a theoretical counterexample in Section 4 and a simulation study using an

imputation function whose usefulness has been justified by such a measure (irmi; Templ,

Kowarik and Filzmoser, 2011) and which is available for the software package R (R Core

Team, 2014) in Section 5. But first we will give a short introduction into the multiple

imputation approach proposed by Rubin (1987) and discuss the mean squared error of

imputations as a measure for the comparison of imputation methods in Section 2 and 3,

respectively. Section 6 summarizes the results and proposes to adopt an evaluation criterion

that focusses on the statistical properties of statistics in subsequent analyses.

2 Imputation

Replacing each missing value by just one estimated value and applying standard software

may lead to severe problems. For example, if in subsequent analyses model parameters are

estimated, then corresponding estimators may be biased if the method used to generate the

imputations is not appropriate. If standard errors are calculated based on functions pro-

vided by the predominantly used software packages for completely observed data sets, they

will systematically be downward biased even if the estimator of interest is (asymptotically)

unbiased, leading to rejection rates which are too high and to confidence intervals which

are too small (Rubin, 1987). Further, if the completed data set is used for generating pre-

dictions, then these predictions and/or their variances may systematically be biased. Thus

the crucial question is about criteria that can be used to identify an appropriate imputation

method.

In the context of multiple imputations, where for each missing value several (m =

1, . . . ,M) possible values — usually 5 to 20 — are generated, Rubin (1987) justified a

Bayesian model based approach to generate imputations. However, non-Bayesian impu-

tation methods, e.g., based on Bootstrap techniques may also be proper (Rubin, 1987).

If an imputation method is proper, then estimators with desirable properties in complete

data situations when applied to multiply imputed data sets can still be expected to have

favourable properties, i.e., they should be consistent, asymptotically normally distributed

and a variance estimator is available. Corresponding confidence intervals and hypothesis
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tests tend to be valid and valid predictions are usually possible.

Basically, an imputation method tends to be proper if the imputations are independent

draws from an appropriate posterior predictive distribution of the variables with missing

values given all other variables (Rubin, 1987). This does not only imply that the deviations

of the imputed from the missing true values are unsystematic, but also that the variation

in the imputations reflects all the uncertainty in the predictions. It does neither require

nor imply that some measure of distances between true and imputed values is minimal. For

more detailed discussions about proper imputation methods, see Rubin (1987, 1996, 2003),

Little and Rubin (2002), Meng (1994), Meng and Romero (2003), Nielsen (1997, 2003a,

2003b) and Robins and Wang (2000).

Once an incomplete data set is multiply imputed, standard analyses are applied to the

M data sets, and the results are easily combined according to the rules given in Rubin

(1987): Let θ̂m be an estimator of scientific interest based on the mth imputed data set

(m = 1, . . . ,M), θ̂ the mean of the M estimators and V̂ar(θ̂m) the variance estimator of

θ̂m, then the final estimator for θ and its variance estimator are given by θ̂ =
∑

m θ̂m/M

and V̂ar(θ̂M) = WM +(1+M−1)BM , where WM =
∑

m V̂ar(θ̂m)/M is the within variability

and BM =
∑

m(θ̂m − θ̂)(θ̂m − θ̂)′/(M − 1) is the between variability, which reflects the

amount of information due to nonresponse.

3 Evaluation Criteria

One strategy to evaluate an imputation method in the context of statistical analyses is

actually to evaluate the method used to create the imputations with respect to the statisti-

cal properties of resulting estimators or, more generally, functions of the random variables

considered and may be called ‘inference criterion’ (Kuchler and Spiess, 2009).

The intuitively appealing idea of evaluating imputation methods based on differences

between imputed and true values can only be realized theoretically or in simulation studies.

Since theoretical results are often not available in complex real world situations, simulations

are usually used to demonstrate the performance of imputation methods (e.g., Waljee et al.,

2013; Templ, Kowarik and Filzmoser, 2011). However, functions of distances of imputed

and true values only consider just a few aspects of the predictive distribution of the variables
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to be imputed.

We will illustrate this based on the mean squared error (mse) of the imputations, noting

that this measure has a slightly different meaning as the mean squared error of estimators

used in statistics. Let X be a random variable and X̃ be another random variable used

as prediction or imputation for X. For simplicity, we take expectations with respect to X

and X̃ instead of means over units and simulations. Then the expected mean squared error

(emse) of the imputations is

E[mse(X̃)] = E[(X̃ −X)2] = E[var(X̃|X)] + E[(E(X̃|X)−X)2].

Obviously, moments above the second are ignored in the evaluation criterion. However,

in subsequent analyses also higher moments may have an effect on the properties of test

statistics and estimators. For example, de Jong, van Buuren and Spiess (2014) found in

simulations that imputation methods may work well according to bias and coverage of

regression parameter estimators if the conditional distribution of variables to be imputed

and the conditional distribution from which imputations were drawn are both symmetric.

But the same methods may fail if the distribution of imputations conditional on all observed

variable values differed in skewness or kurtosis from the true conditional distributions of

the variables with missing values.

Further, E[mse(X̃)] is small if either E[var(X̃|X)] or E[(E(X̃|X)−X)2] vanishes and the

other term is small. However, from an inferential point of view it may be preferable to have

an imputation method with zero bias of the imputations and to accept a higher variance.

Yet, an imputation method with larger bias but small variance would be preferred based on

the expected mean squared error. For example, assume that one imputation method would

produce imputations with no variation but overestimating the unobserved true values X

by a fixed amount a. The second imputation method is equal to the true data generating

process and imputes with zero bias but with variance b > a2. In this case, for example, the

mean would systematically overestimate the true mean of X based on the first but not on

the latter method.

Of course, it is desirable to have imputations with minimum variance. But a more

important aspect is that the functions of observed and imputed variables, e.g. estimators

or test statistics, and their variances can consistently be estimated. The requirement of a
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minimal variance of imputations given the true but unobserved variables may thus be in

conflict with the idea underlying the method of multiple imputation that the variation in the

imputations should reflect all the uncertainty in the predictions. In this latter situation, if

the imputation method is proper, a simple variance estimator is available while in the former

it is usually not (see, e.g., the variance estimator proposed by Robins and Wang, 2000).

Hence if the imputation method is improper and the variation of the imputations does

not reflect all the uncertainty in these predictions, then variance estimators in downstream

analyses have to be adapted. Note that values of [E(X̃|X)−X] equal or close to zero are

implied by the requirement that the imputations are drawn from an appropriate predictive

distribution, but the converse does not necessarily hold.

Note also that if the imputed values were identical to the true but unobserved values

— and thus any measure based on differences were zero — then the resulting downstream

analyses based on the complete data set without missing values and based on the completed

data set were identical. But this happens only if either the imputations can be derived

without error from other variables or with probability approaching zero if the imputation

method is based on stochastic methods. The first case would usually not be called a

missing data problem, and simple calculation rules could solve the problem. The latter

case is a missing data situation, but there is no theoretical justification for the (implicit)

assumption of a one-to-one relationship between the values of a function based on differences

of true and imputed values and the properties of subsequent inferences. Hence, imputation

methods which seem to be appropriate according to this ’hit-rate’ criterion (Kuchler and

Spiess, 2009) do not guarantee that downstream analyses are valid. Even more, if they are

evaluated only with the help of simulations, statements beyond the situations considered

in the study are not justified. The failure of the hit-rate criterion as general measure to

evaluate imputation methods will be illustrated in the next section.

4 Counterexample 1: Binary Random Variables

Let X be a random binary variable and denote the unknown probability of observing a ’1’ as

π, i.e. Pr(X = 1) = π. Further assume that we independently repeat this Bernoulli process

n times, so that Xi ∼ X, i = 1, . . . , n, Pr(Xi = 1) = π and Pr(Xi = 0) = 1 − π for all i.
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Suppose further that not all n values of X1, . . . , Xn are observed, and that for each i the

probability of observing the value of Xi is independent from all Xi, i = 1, . . . , n. If missing

values are generated independently from all variables, the missing data are called missing

completely at random (MCAR; Little and Rubin, 2002). For simplicity we rearrange the

data such that out of the n results, the first nobs are observed whereas the last nmis are

missing, hence n = nobs + nmis. Let
∑

obsXi denote summation over the first nobs and∑
misXi denote summation over the last nmis elements. Thus π̂obs =

∑
obsXi/nobs is an

unbiased estimator of π based on the observed values only.

We will consider two imputation strategies: Generate imputations deterministically

based on the estimated probability using the observed part of the sample, i.e., if π̂obs > 0.5

impute the value ‘1’, otherwise impute ‘0’ for all missing values. This is an extension of

an example considered in Rubin (1996) and will be denoted as strategy S1. Alternatively

we may adopt an imputation model that tries to mimic the true data generating process

following Rubin (1987). This strategy will be called strategy S2.

If S2 is adopted, then one could apply a Bootstrap technique to generate imputations

as follows: 1) Select a Bootstrap sample, i.e. randomly select nobs values with replacement

from the observed part of the sample, 2) select for each missing value randomly (with

replacement) a value from this Bootstrap sample. Repeating steps 1) and 2) M times

generates M imputed versions of the data set.

Let I(A) denote the indicator function, taking on value one if event A occurs and zero

otherwise. Imputations are denoted by X̃, thus X̃i,m denotes the mth imputed value of

case i and is generated according to X̃i,m = I(π̂obs > 0.5). Index m will only be used if

m > 1. Further, we will adopt a frequentist perspective and fix n and nobs and thus nmis.

Adopting S1 leads to

π̂S1 =
(∑

obs

Xi +
∑
mis

I(π̂obs > 0.5)
)
/n,

E(π̂S1) = (nobsπ + nmis[1−B])/n, (1)

var(π̂S1) = (nobsπ(1− π) + 2nmisnobsπ(B −B−) + n2
mis(1−B)B)/n2, (2)

E(mse(X̃)) = E[(X̃i,m −Xi)
2] = 1−B + 2πB− − π, (3)

where bkc is the greatest integer less than or equal to k, B := B(bnobs/2c;nobs, π) denotes

7



the binomial distribution function evaluated at bnobs/2c, B− := B(bnobs/2− 1c;nobs− 1, π)

and expectations are taken with respect to all Xi.

For S2 we first generate M imputations for each missing value of X and then calculate

m versions of the estimator for π, π̂m, as described in Section 2. We get

π̂S2 =
(∑

obs

Xi +
[∑

mis

∑
m

X̃i,m

]
/M
)
/n,

E(π̂S2) = π (4)

var(π̂S2) =
π(1− π)

n

(
1 +

nmis

nobs

+
1

M

nmis

nobs

(nobs − 1)(n− 1)

nobsn

)
(5)

E(mse(X̃)) = E[(X̃i,m −Xi)
2] = 2π(1− π). (6)

To decide which of the two strategies, S1 or S2, should be preferred, one could first state

that S1 is simpler, needs less computing time and is thus computationally more efficient

than S2. Adopted criteria are often functions of the distances of true and imputed values

(see, e.g., Moorthy, Mohamad and Deris, 2014), one version being the mean squared error

of imputations, given as the mean of the squared differences of true an imputed values. In

our example, the expected mse can be calculated under both strategies. The emse under

S1, (3), is a function of π, B and B−, where B is the probability for observing π̂obs ≤ 0.5

given π and a fixed number nobs of independent draws. B− is the probability for observing

π̂obs ≤ 0.5− 1/nobs in nobs− 1 independent draws given π. On the other hand, emse under

S2, (6), does only depend on π with its maximum at π = 0.5.

Figure 1 shows the emse’s under both strategies for two different numbers of observed

values, nobs = 50 and nobs = 100000. Obviously, emse under S1 is smaller or equal to emse

under S2. It is equal under S1 and S2 only if π = 0, π = 1 or, for large nobs, if π = 0.5.

According to the emse, S1 would thus be preferred. Usually the comparison of the different

imputation methods stops at this point (e.g., Troyanskaya et al., 2001; Waljee et al., 2013).

However, if the variance of the binary variable before any missing values occurred would

be of interest, S1 would lead to a severe underestimation of the variability of X even

for the actual data set. If more general downstream analyses are intended based on the

imputed data sets, then additional aspects become relevant. For example, one might be

interested in estimating π or the variance of the binary variable, testing hypotheses about π
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Figure 1: emse under strategy S1 and S2 for nobs = 50 (left) and nobs = 100000 (right).

or constructing confidence intervals. Then the statistical properties of π̂S1 and π̂S2 become

important.

Result (1) shows that π̂S1 is unbiased only if nmis = 0 or B = 1 − π. nmis is zero,

if there are no missing values, in which case nobs = n. B is equal to 1 − π, if π = 0

or π = 1. For large enough n, π = 0.5 is the only other point for which this function

is approximately equal to 1 − π. To see this, approximate the Binomial distribution by

the normal distribution. Inspection of this function and its first and second derivatives

with respect to π shows that it is equal to 1− π if π = 0.5 and it is (strictly) concave for

0 < π < 0.5 and (strictly) convex for 0.5 < π < 1 with a negative first derivative for all π.

From (4) it is seen that π̂S2 is unbiased. Bias (bias), variance (var) and mean squared

error (mse) of π̂S1 and π̂S2 for an example with nobs = 30, nmis = 20 and M = 1 are depicted

in Figure 2. Note that the mean squared error of estimator π̂ is mse(π̂) = E[(π̂ − π)2] =

[bias(π̂)]2 + var(π̂).

Figure 2 shows that S1 leads to an estimator for π which is biased for almost every

value of π and may have excessive variance in a region around π = 0.5. This leads to

biased and/or invalid inferences over a wide range of π values. From the graph depicting

the mse of both estimators, one may infer that there is a small range of values for which

S1 leads to an estimator which, although biased, has a slightly lower mse. The smaller mse

could make this estimator attractive in this area. It should be noted, however, that the
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Figure 2: Bias, variance (var) and mse of π̂S1 and π̂S2 for nobs = 30 and nmis = 20, M = 1.

number of imputations can be increased under S2 leading to a decreasing variance of π̂S2,

and eventually an mse which is not larger than that for π̂S1. In addition, increasing the

number of observations n also leads to a disappearance of the small advantage of S1 over

S2.

Thus, a small value of emse does not imply desirable properties of estimators of unknown

model parameters. Further it is sample-specific (see Figure 1). In this simple example, the

imputation strategy based on Rubin’s (1987) theory has the larger emse, but leads to

estimators with better properties over a wide range of π. Note that in general problems,

variance estimators of estimators based on singly imputed data sets or based on data sets

completed by adopting an improper imputation method (in the sense of Rubin, 1987), are

often not available or at least very costly to get (c.f., Robins and Wang, 2000). But a simple

variance estimator of π̂S2 based on M > 1 is available by the estimator given in Section

2. Further note that, in this example, considering the emse does not tell anything about

the imputation methods beyond the function of the differences of imputed and true values:

Even the variance of the binary variable in the imputed data set would be systematically

too small as compared to the complete data set. Hence, the emse is a descriptive measure

with a situation specific meaning. Any generalization to statements about the quality of

an imputation method is not justified.
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5 Counterexample 2: Continuous Random Variables

For the second example, we again adopted two different imputation methods. The first one

is primarily justified in simulations by small values of an error measure which is a function

of differences between imputed and true values. The method is realized in function irmi

(‘Iterative Robust Model-based Imputation’; Templ, Kowarik and Filzmoser, 2011) as part

of the package VIM, available for R (R Core Team, 2014). irmi is a robust imputation

function, but a non-robust version is available by choosing the corresponding option.

The other method is implemented as mice (van Buuren et al., 2014), a function also

available as an R package, and — if only one variable is affected by missing values — allows

generating imputations from a predictive posterior distribution (Rubin, 1987) based on a

linear regression model for continuous variables, which tries to mimic the corresponding

data generating process in its relevant aspects. It is written to handle much more general

situations, but the situation considered here is a special case. Both methods allow the gen-

eration of multiple imputations, and we use M = 10 throughout. Since in our simulation

study we want to compare imputation methods that differ mainly in their general justifica-

tion, we use the parametric version of irmi to compare it with the parametric imputation

method implemented in mice.

We simulated data sets with four continuous variables varying the following conditions:

1. number of units n, with n = 200 or n = 2000,

2. distribution of variables, with a) variables multivariate normally distributed (‘nor-

mal’ condition) and b) one t-distributed (df = 3), one χ2-distributed (df = 4), one

uniformly on [0, 1] distributed variable — these three variables were independently

generated — and the fourth variable being a weighted linear combination of the for-

mer variables with weights β = (−2,−1, 4)′ plus a normally distributed error term

with zero mean and variance one (‘mixed’ condition),

(a) under the normal condition: the covariance matrix of the variables was a corre-

lation matrix with all correlations being equal to either ρ = 0.2 or ρ = 0.7, the

mean of each variable was 10, missing values are missing at random (MAR, see

below),
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(b) under the mixed condition: the missing data were either MAR or MCAR.

After having generated the data, we estimate a standard linear regression model of the

fourth variable, denoted as Y , on all the others (X1, X2 and X3) and a constant. To

save space, we consider only the estimated parameter values weighting the third variable

(X3) in our data set. In case of the normal condition, the true parameter values of the

corresponding regression weights depend on the mean, variances and the correlations of the

variables. For ρ = 0.2 the corresponding weight of the third variable is β = 0.143 and for

ρ = 0.7 we have β = 0.292. In the mixed condition β = 4.

Estimation of the regression parameters before any values are deleted serves as a com-

parison, results are labeled ‘com’ in Table 1. In a next step, missing values were generated.

Under all conditions we generated approximately 40% missing values in the third variable.

No other variable was affected. For missing values to be MCAR under the mixed condi-

tion, we generated binary response variables from a Bernoulli distribution with probability

0.6 and set values of X3 to ‘missing’ if this variable was equal to zero, hence the missing

probability was 0.4. For missing values to be MAR, we generated a latent variable as a

linear function of Y and generated again binary response variables but now, under the

normal condition, with probability 0.9 if the value of the latent variable was smaller than

its median, and with 0.3 otherwise. In this case, the overall missing probability was again

0.4 = 1 − (0.9 × 0.5 + 0.3 × 0.5). Under the mixed condition, the response probabilities

were 0.9 and 0.15 depending on whether the values of the latent variable was below its

0.6-quantile or not, and thus the overall probability of a missing value was again 0.4.

After values have been deleted, for each missing value, M = 10 imputations are gen-

erated with irmi (package VIM version 7.4; option for ‘noisy’ imputations turned on to

generate variation in the imputations; see Templ, Kowarik and Filzmoser, 2011) and with

mice (version 2.22). In both cases, finally a linear regression model is estimated using the

combining rules given in Section 2. Note that differently to example 1, in example 2 the

number of observed and missing values is not fixed.

For each of the eight conditions, we generated 1000 data sets and calculated the mean

of the estimates (mean), the proportion of cases for which the confidence interval covered
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the true value (cover) and the mean of the values of

err =
1

Mnmis

M∑
m=1

∑
mis

|x̃i,m − xi|/|xi|

(c.f. Templ, Kowarik and Filzmoser, 2011), but now taking into account that M > 1. In

addition, we calculated the normalized root mean squared error (nrmse; e.g., Moorthy,

Mohamad and Deris, 2014),

nrmse =

√∑M
m=1

∑
mis(x̃i,m − xi)2

M
∑

mis x
2
i

.

Each simulation can be considered to be a binary experiment in which the confidence

interval either covers the true value or not. Therefore, if all assumptions are met, the

actual coverage rate based on 1000 replications should approximately be between 0.936

and 0.964 for α = 0.05. Results are presented in Table 1.
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Table 1: Mean of estimates (mean), coverage (cover; α = 0.05) and error measure (err);

1000 simulations, 10 imputations.

normal condition, MAR, ρ = 0.2, β = 0.143

n = 200 n = 2000

mean cover err mean cover err

com 0.145 0.958 0 0.143 0.945 0

irmi 0.148 0.897 0.104 0.151 0.865 0.104

mice 0.142 0.933 0.111 0.143 0.940 0.108

normal condition, MAR, ρ = 0.7, β = 0.292

n = 200 n = 2000

mean cover err mean cover err

com 0.294 0.960 0 0.292 0.941 0

irmi 0.306 0.914 0.066 0.308 0.836 0.065

mice 0.291 0.951 0.070 0.291 0.935 0.066

mixed condition, MCAR, β = 4

n = 200 n = 2000

mean cover err mean cover err

com 4.000 0.944 0 4.000 0.953 0

irmi 4.036 0.902 2.162 4.019 0.849 2.253

mice 4.000 0.955 2.312 4.001 0.947 2.395

mixed condition, MAR, β = 4

n = 200 n = 2000

mean cover err mean cover err

com 3.999 0.956 0 4.001 0.964 0

irmi 4.206 0.464 2.660 4.043 0.605 1.947

mice 4.009 0.950 2.452 4.010 0.944 2.233

14



The results in Table 1 suggest that the statistical properties of the downstream analysis

based on imputations generated with irmi are systematically worse as compared to those

based on mice: Estimates based on irmi show a systematic and larger bias than those

based on mice and coverage rates are systematically too small. Coverage rates for results

based on mice are in general acceptable with two borderline cases.

These results are in contrast to the mean values of the error measure: In all but one case,

the error measure takes on smaller values for the imputations based on irmi, the exception

being the mixed condition, where missing values are MAR and n = 200, in which case the

value is smaller for imputations generated with mice. The pattern is the same if instead of

err the measure nrmse is considered (not shown).

Thus, the values of the measures considered based on distances of imputed and true

values do not reflect the statistical properties of downstream analyses. As such, they

may be misleading: In our example, based on err or nrmse, one would prefer an imputation

method that leads to biased estimators and coverage rates which can expected to be severely

downward biased, leading to falsely rejecting a true null hypotheses much too often.

6 Conluding remarks

In this paper we considered popular measures to evaluate imputation methods in simula-

tions which are based on a hit-rate criterion. These measures are functions of distances

between imputed and true values. Adopting these mse-like measures presupposes that a

method which implies values close to zero may be better in some sense than a method

that leads to larger values. However, these measures lack a theoretical justification which

would allow a general evaluation of imputation methods and would necessarily include a

definition of the criteria of interest.

Of course one could be interested only in predictions given the specific simulated sit-

uation without requirement for more general inferences. In this case, one could define a

function of distances of true and imputed values as a quality measure, run simulations for

this situation and could infer from the results of these simulations which of the imputation

methods seems to be optimal in the considered situations with respect to the specific cri-

terion formalized by this measure. Without further justification, more general inferences
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would not be possible.

The chosen imputation method may not be optimal even according to the same criterion

realized by this measure in a different situation. It may not allow to choose the best

method if in the same or in other situations another aspect is of interest, like the variation

of variables. And, as has been shown in the examples above, it fails if statistical properties

of estimators and test statistics in downstream analyses are of interest. This is because

there is no one-to-one relationship between measures based on differences of imputed and

unobserved true values and properties of statistics considered to be important in subsequent

analyses.

The problem is that these measures simply tell us nothing about other criteria than the

distances in the actual data set. Even worse, as the true but unobserved values are not

available in real-life situations and the true situation is unknown, simulation results based

on a mse-like measure can not be used to justify the use of the corresponding imputation

method in real-life applications. In this sense these measures are descriptive, situation-

specific measures.

If more general statements are intended based on imputed data sets, other criteria need

to be adopted. The criterion needed to preserve statistical validity in very general set-

tings is the inference criterion. In the case of evaluating imputation methods, one way

— although not the only one (e.g., Robins and Wang, 2000) — to realize this criterion is

to generate multiple imputations according to proper imputation methods as described in

Rubin (1987, 1996). Although it is not easy to develop methods that achieve this goal in

general settings, it seems to be worth to develop them for allowing valid downstream infer-

ences. If a theoretical justification for the use of measures to evaluate imputations methods

is not available, simulation studies can be helpful. But instead of functions of distances

between imputed and true but unobserved values, evaluation of imputation methods should

rather focus on the properties of statistics, like the (asymptotic) bias of the estimators, the

(asymptotic) bias of variance estimators and the actual coverage rates of corresponding

confidence intervals.
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