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A Comparison of Multiple Imputation Techniques

Abstract

Most datasets are affected by item nonresponse. Software packages offering mul-

tiple imputation (MI) to compensate for missing values often provide several tech-

niques to generate MIs like Parametric Bayesian imputation or k-nearest-neighbor

(kNN) imputation. Given the variety of imputation techniques, a question in appli-

cations is which of the techniques to choose. In this paper we perform a comparison

of various standard imputation techniques as provided by software packages and

two newly proposed robust imputation techniques under different scenarios. The

comparisons are based on simulations, but some aspects are illustrated using data

collected to estimate functions fulfilled by music. The results imply that none of the

imputation techniques works well under all scenarios considered: If the imputation

model is correctly specified, then parametric methods allow valid inferences. How-

ever, if the (conditional) distribution of the variable to be imputed is misspecified,

then neither these nor kNN techniques may lead to valid inferences. Robust, semi-

parametric techniques may work better in these situations, but fail if the variable to

be imputed follows a heavy tailed distribution. However, results depend on sample

size: In small samples the self-correcting property of MI seem to be at work, i.e.,

point estimators seem to be biased but coverage rates are acceptable due to overes-

timated variances, whereas structural problems of these techniques become obvious

in larger samples.

Keywords: Missing Data; Multiple Imputation; Misspecified Imputation Models;

Robustness
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1 Introduction

Item nonresponse, i.e. not observing the reactions to items of otherwise observed units, is

an obstacle in every statistical analysis. If item nonresponse is selective with respect to

the research question, then simply ignoring the incompletely observed cases or applying

other ‘ad hoc’ methods usually leads to invalid inferences (e.g. Little and Rubin, 2002;

Rubin, 1987; Schafer and Graham, 2002). But even if the observed part of the sample

is not selective due to nonresponse, it is often wise to compensate for missing values to

avoid a big loss of information if only completely observed cases are analyzed (complete

case analysis, CCA), which is the default option in many standard software packages for

incompletely observed data sets.

Multiple imputation (MI; Rubin, 1987) is one established method to compensate for

missing data. The idea behind MI is to generate several (M) predictions for each missing

value, analyze the multiply imputed data set M times with standard software for com-

pletely observed data sets and then combine the M estimation results according to simple

rules given in Rubin (1987).

Various imputation techniques are available in statistical software packages (see e.g.,

Horton and Kleinman, 2007), but not all of them are theoretically justified by Rubin

(1987). Available techniques are based on strong assumptions, like Bayesian imputation

as proposed by Rubin (1987), less strict assumptions, like techniques that impute donor

values from the same data set (k-nearest-neighbor or kNN techniques; e.g., Little, 1988),

which are believed to be more robust with respect to a misspecification of distributional

assumptions (cf. Andridge and Little, 2010), or techniques based on weak assumptions like

so-called robust imputation methods (e.g., Templ, Kowarik and Filzmoser, 2011). Hence,

in applications it is often not obvious which of the techniques allow valid inferences under

which conditions, and which do not.

Therefore, in this paper we compare various imputation techniques which are provided

by leading software packages. More precisely, we are interested in: (1) how robust are
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inferences given a misspecified imputation model, (2) do kNN techniques and robust

imputation techniques generally lead to valid results and, (3), is it always better to adopt

some imputation method as compared to ignoring the missing data problem and analyze

only the completely observed cases? In addition, we will investigate if results of kNN

imputation depend on the number of possible donors k. Dahl (2007) considers this topic,

which seems not to have been picked up in the literature. As robust methods may not

work well in small samples, we also vary the sample sizes to separate structural problems

of the methods from sample size issues.

Evaluations and comparisons are first done via simulations and the different tech-

niques are then applied to a real data example. The imputation techniques are evaluated

with respect to the finite sample properties of parameter estimators in a regression model

with missing values in a continuous predictor variable, and with respect to the frequency

properties of confidence intervals under various conditions. One factor varied is the distri-

bution of the predictor variable with missing values. Although distributions of predictor

variables in the models of scientific interest are usually not of interest because statements

are conditional on the realized values, they become relevant if missing predictor values

are imputed. Another factor varied is the model that generates the missing data.

This paper is organized as follows: In Section 2 we describe the predominantly used

classification of missing values. This section also provides a short introduction into the

method of multiple imputation. Section 3 describes and discusses the various imputation

techniques considered. With one exception, they are all – although not exclusively –

available in the software package R. The setup of the simulation experiment is described

in Section 4, and the results are presented in Section 5. Section 6 provides a real world

example. Finally the results and their implications are discussed in Section 7.
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2 Multiple Imputation

Based on Rubin (1976, 1987), missing data are either missing completely at random

(MCAR), missing at random (MAR) or missing not at random (MNAR). Missing data

are MCAR if the probability of the observed pattern of observed and missing data does

not depend on any of the other variables relevant to the analysis of scientific interest,

observed or not. They are MAR if this probability does depend on observed values of the

relevant variables but not additionally on unobserved values of relevant variables. Most

of the methods available in software packages are based on the assumption of missing

data being MCAR or MAR. If the missing data are MCAR, then the observed part of

the sample is just a non-selective random subsample of the intended complete sample.

Finally, the unobserved data are MNAR if the probability of the pattern of observed and

missing data does depend not only on observed but in addition on unobserved values

of variables relevant to the research question. In this latter case, strong assumptions or

external knowledge is usually necessary to compensate for the missing data. This paper

deals with missing values being MAR.

The idea behind MI (Rubin, 1987) is to generate multiple (M) predictions (‘imputa-

tions’) for each missing datum, thus generating M completed versions of the incompletely

observed data set each of which can be analyzed using standard methods. The M results

are then combined according to simple rules to allow inferences. MI is developed based

on a Bayesian approach and for the final analyses to allow valid inferences, the analysis

method applied to the data set without missing values should be valid and the imputation

method has to be proper. According to Rubin (1987) an imputation method is proper for

the estimators of interest if, given the assumed response mechanism and an appropriate

model for the data, the imputations are independent draws from the predictive posterior

distribution of the variables with missing values given all other relevant observed vari-

ables. If the multiple imputation method is proper for the estimators of interest, then

the analysis using the multiply imputed data set tends to be valid even in the frequentist
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sense. Besides Bayesian methods, other methods like the approximate Bayesian Bootstrap

can be proper as well (for a more extensive discussion, see Rubin, 1987, 1996; Schafer and

Graham, 2002; Meng, 1994; Robins and Wang, 2000; Nielsen, 2003). Thus, to generate

MIs, several imputation methods could be adopted.

The analysis of a multiply imputed data set is straightforward following Rubin’s (1987)

combining rules: Let θ̂m be the estimator of scientific interest based on the mth imputed

data set (m = 1, . . . ,M) and V̂ar(θ̂m) be the variance estimator of θ̂m, then the final

estimator and its variance estimator are given by

θ̂ =
∑
m

θ̂m/M and

V̂ar(θ̂) =
∑
m

V̂ar(θ̂m)/M +
(1 +M−1)

M − 1

∑
m

(θ̂m − θ̂)(θ̂m − θ̂)′,

(1)

where
∑

m(θ̂m − θ̂)(θ̂m − θ̂)′/(M − 1) is the ‘between’ variance reflecting the amount of

uncertainty in the estimator due to nonresponse. Generally, inference can then proceed

like in situations without missing values.

3 Methods to Generate Imputations

Throughout we will assume that the model of scientific interest is a homoscedastic linear

regression model

y = x′β + ε, ε ∼ N(0, σ2) (2)

where x is a vector of predictor variables x1, x2, . . . including the constant term. The first

predictor variable, x1, is not completely observed but missing data are MAR. Note that

if only y were affected by missing values being MAR, then, as can be shown, imputations

would not be beneficial, but may lead to invalid inferences if the imputation models

are grossly misspecified. On the other hand, we consider this simple model since it is

comparatively easy to study effects of misspecified imputation models on the inferences of

5



scientific interest. Further, MI techniques that do not allow valid inferences in this simple

scenario, will very likely fail in more complex situations as well.

If all variables are completely observed, estimation of model (2) is straightforward

with standard software. It is important to note that in situations without missing values,

the distribution of the predictor variables is usually irrelevant. This is due to the fact

that inference is justified and made conditional on the values of the predictors, random

or not, realized in the sample. If the values of one or more of the predictors are missing,

however, the distribution of these predictors become important if missing values are to

be compensated by imputations. Then an imputation regression model for this variable

on all other relevant variables has to be estimated and the careful specification of this

model becomes relevant, which may not be straightforward. For example, if the regression

model for the dependent variable given all predictors is a homoscedastic linear regression

model and assuming that the reverse regression imputation model of the predictors to be

imputed given the dependent variable and the completely observed predictors is linear,

is equivalent to assuming that the dependent variable and the predictors to be imputed

are multivariate normally distributed conditional on the completely observed predictors

(Spanos, 1995). Conditional normality of the dependent variable in a homoscedastic

linear model with incompletely observed metric predictors alone is not sufficient to justify

a linear imputation model. Thus, linear imputation models would not in general be

compatible with the true data generating process (DGP). Although it has been proposed

to transform variables to make the assumption of multivariate normality more plausible

(e.g. Honaker, King and Blackwell, 2011; Schafer, 1997), this technique does not work in

general, because the distribution of variables in the observed part of the data set may be

very different from the distribution of the same variables if there were no missing values.

However, according to Little and Rubin (2002), as long as the imputation model differs

only slightly from an imputation model that would be compatible with the model of

scientific interest, MI based inference tends to be conservative i.e., variances of estimators
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tend to be overestimated such that the actual coverage of confidence intervals tend to be

larger than the nominal coverage (‘self correcting property’ of MI). On the other hand,

if the imputation model is grossly misspecified, then estimators of regression parameters

may be biased and variances may be underestimated, leading to confidence intervals which

are systematically too short and to actual rejection rates of true null hypotheses being

too large.

3.1 Bayesian Normal Linear Regression

Imputation by a parametric Bayesian homoscedastic linear regression model is described

in Rubin (1987; see Example 5.1, p. 166–167). Let w be a vector containing a constant

term and predictor variables including yi for the incompletely observed x1. Note that by,

e.g. including interaction terms, the number of elements in w can be different from the

number of variables entering the model of scientific interest (2). For all units it is assumed

that

x1 = w′ϑ+ v where v ∼ N(0, σ2
v). (3)

The unknown parameters of this model (ϑ′, σ2
v)′ are estimated based on the subsample for

which w and x1 are both observed. Then, assuming an appropriate prior distribution, the

posterior distribution of (ϑ′, σ2
v)′ is derived. Random draws ϑ? and σ2?

v from this posterior

distribution are then used to generate imputations x̂mis for those x1 whose values have

not been observed,

x̂mis = w′ϑ? + zσ?
v , (4)

where z are draws from a standard normal distribution. To generate M imputations, the

steps of drawing ϑ? and σ2?
v from their posterior distribution and generating predictions

x̂mis are repeated M times.

This imputation model is justified by Rubin’s work (e.g. Rubin, 1987; Schenker and

Welsh, 1988; but see also Robins and Wang, 2000) and may be expected to allow valid

inferences not only if the variables to be imputed are linearly dependent on all other
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variables involved but to a certain extent, due to the ‘self-correcting’ property of MI

(Little and Rubin, 2002), even in more general situations, like non-linear or non-normal

models.

3.2 AMELIA

Honaker, King and Blackwell (2011; see also Honaker and King, 2010) propose an impu-

tation method called ‘Amelia II’ which is based on a mixed approach. In a first step, a

bootstrap sample from the data set with missing values is selected which replaces draws of

parameters from a posterior distribution, and in a second step the EM-Algorithm (Demp-

ster, Laird and Rubin, 1977) is adopted to estimate the parameters necessary to generate

imputations by predicting the unobserved values using the data set with missing values.

The EM algorithm successively calculates the expectation of the log-likelihood function

with respect to the variables with missing values conditional on those with observed val-

ues and then maximizes this function with respect to the unknown parameters. This

algorithm is usually fast and stable in linear regression problems. To generate M impu-

tations, the bootstrap, EM- and prediction steps are repeated M times. The underlying

assumption is that all variables are multivariate normally distributed.

3.3 Imputation based on Generalized Additive Models for Lo-

cation, Scale and Shape

A robust imputation technique, denoted as gamlss, has been proposed by de Jong, van

Buuren and Spiess (2014). It is based on a class of generalized additive models for

location, scale and shape (GAMLSS) proposed by Rigby and Stasinopoulos (2005) and

allows flexible modeling of the location (e.g. the mean), the scale (e.g. variance), and the

shape (e.g., skewness, kurtosis) of the distribution of the dependent variable, which in

the case considered here is the incompletely observed predictor variable, given all other

variables.
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The sub-model considered in in this paper is

g1(µx1) = α1 +

J1∑
j=1

h1j(vj) and g2(σx1) = α2 +

J2∑
j=1

h2j(vj), (5)

where gp(·), p = 1, 2, are monotone link functions that relate the parameters of the

conditional distribution, i.e. the mean µx1 and the standard deviation σx1 , to predictor

variables vj, hpj(·) represent the effects of vj, and αp are constant terms. Note that this

formulation allows for heteroscedasticity. To generate imputations, we allow the predictors

to have non-linear effects. Thus, the unknown functions hpj of vj are smoothing terms.

The R implementation of the imputation method for our simulations uses the GAMLSS

package (Rigby and Stasinopoulos, 2005; Stasinopoulos and Rigby, 2007) in R to fit

model (5) based on (penalized) maximum likelihood estimation and adopting the default

link functions. Rigby and Stasinopoulos (2005) and Stasinopoulos and Rigby (2007)

provide a description of the algorithms used by this package. The functions hpj are chosen

to be smoothing terms, more specifically, we use penalized B-splines with 20 knots, a

piecewise polynomial of second degree, a second order penalty and automatic selection of

the smoothing parameter using the Local Maximum Likelihood criterion (for a discussion,

see Eilers and Marx, 1996). For high amounts of smoothing, the fit of this smoother

approaches linearity. The conditional distribution of the dependent variable given all

predictors is assumed to be the normal distribution.

Imputations are generated as follows (c.f. de Jong, van Buuren and Spiess, 2014).

Firstly, fit the imputation model based on the completely observed part of the data set.

Secondly, replace the observed values of the variable to be imputed by predictions from

the fitted model in step one (‘bootstrap sample’). Thirdly, refit the model based on this

bootstrap sample and predict the unobserved values. Repeating steps 2 and 3 M times

generates M imputations for each missing value.

It should be noted that the approach proposed by Rigby and Stasinopoulos (2005) is

much more general. For example, the dependent variables may be discrete, truncated, or

count data with corresponding link functions. Models may include linear and interaction
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terms, polynomials, random effects and/or spline terms. The conditional distributions of

the dependent variable can be chosen from a large class of distributions.

3.4 Iterative Robust Model-based Imputation

Templ, Kowarik and Filzmoser (2011) propose an algorithm called ‘Iterative Robust

Model-based Imputation’ (IRMI) implemented in the R package VIM (Templ, Alfons,

Kowarik and Prantner, 2014). The essence of the method is an imputation procedure like

the one described in Section 3.1, but adopting one of several robust estimation methods

to reduce the influence of outlying observations on the regression parameter estimates.

Instead of drawing parameters from their posterior distribution, however, they are fixed

at their posterior mean. The added error term is multiplied by a non-justified factor larger

then one to account for the additional uncertainty in the imputations due to the need of

estimating the model. Multiple imputations are generated by repeating the above steps

M times (for a description, see Templ, Kowarik and Filzmoser, 2011).

The default option for continuous dependent variables in IRMI is an estimator pro-

posed by Yohai (1987) which is efficient in linear regression models with normally dis-

tributed errors but at the same time largely ignores outliers. The principal problem of

such an automatic method, however, is that it does not differentiate between valid and

invalid outliers. Thus, e.g., if the conditional distribution of a variable to be imputed

is skewed, valid values which are in a sparsely populated region may be ignored when

fitting the imputation model. This would lead to estimating the imputation model using

systematically selective samples and thus to adopting an improper imputation method.

A small simulation study presented by Templ, Kowarik and Filzmoser (2011) is in-

tended to show the good properties of the technique. However, coverage rates of the true

values in this limited study range between 0.882 and 0.906 given α = 0.05. In fact, this

imputation method seems not to be proper. In an additional study, imputation techniques

are evaluated based on comparisons of true but unobserved and imputed values. With
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respect to these error measures, the technique proposed by Templ, Kowarik and Filzmoser

(2011) performs better than an imputation method following the procedure described in

Section 3.1. However, for an imputation method to be proper it is neither required nor

implied that some measure of distances between true and imputed values is minimal (see

Rubin, 1987, 1996, 2003).

3.5 k-Nearest-Neighbor Imputation

An alternative to fully parametric methods are k-nearest-neighbor (kNN) techniques. The

idea is to find, for each case with missing x1 but observed (or already imputed) w, say, k

completely observed neighbors that are somehow close with respect to w to the case with

a missing value. From this pool of neighbors, one donor is usually randomly selected and

its value x1 is taken as an imputation for the case with a missing value.

The main advantages of kNN imputation is that it is simple, that it seems to avoid

strong parametric assumptions, that it can easily be applied to various types of variables

to be imputed and that only eligible and observed values are imputed (e.g., Andridge and

Little, 2010; Little, 1988; Schenker and Taylor, 1996).

Closeness is usually expressed as a distance measure, one popular being based on the

(estimated) conditional mean of (x1|w),

dPMM
i,i′ = |Ê(xi1,mis|wi)− Ê(xi′1,obs|wi′)|,

where xi1,mis denotes variable x1 of unit i whose value has not been observed, and xi′1,obs

denotes variable x1 of unit i′ whose value has been observed (i, i′ = 1, . . . , n). The

imputation technique is also called ‘predictive mean matching’ (PMM) imputation.

In many cases, the predictive mean is estimated using a linear regression of x1,obs on w.

The idea underlying this PMM version goes back to Rubin (1986; see also Rubin, 1987,

Metric-Matching Hot-deck Method, p. 158 and Example 5.2, p. 168) and Little (1988)

who coined the name. Let coefficient ϑ̂ be the estimated regression coefficient of a linear
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model, then the measure function simplifies to

dPMM
i,i′ = |(wi −wi′)

′ϑ̂|. (6)

However, highly nonlinear effects of elements from w on x1 may not appropriately be

incorporated, as their weighted difference can be zero simply because the corresponding

elements in ϑ̂ are zero. It can also be zero due to weighted differences summing up to

zero.

To generate M imputations for a Bayesian version, one would repeat the following

steps M times: Estimate the imputation model based on the completely observed cases.

Randomly select parameters from their posterior distribution, use these parameter values

to calculate the distance measure, search for neighbors and randomly select for each

x1,mis one value x1,obs from the corresponding set of neighbors. For a Bootstrap version

one would replace drawing parameters from their posterior distribution by selecting a

Bootstrap sample from the completely observed cases, estimate the conditional mean

model and calculate the distances using these parameter estimates.

Finally, selection of the imputations from the pool of possible donors at each of the

M steps can proceed either unweighted or weighted, in which case close neighbors usually

receive a higher probability of being selected as compared to more remote units.

Two notes are worth mentioning. First, by using observed x1 values from some donors

as imputations, it is implicitly assumed that they are random independent draws from an

approximate posterior distribution of x1,mis given wmis, the vector of predictors for this

unobserved x1. Thus, the assumption is that the probability of observing x1 given wmis

is independent from differences between wmis and wobs, the values of w of completely

observed neighbors. This is equivalent to assuming that the missing data are MCAR

within the cells implicitly defined by the k neighbors. Strictly speaking, the assumption

is that the missing data are neither MCAR nor MAR, but missing locally completely at

random (MLCAR).

Second, a special case of kNN imputation is k = 1, i.e. the closest neighbor is the donor.
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In this case there is no random selection of the values to be imputed and even appropriately

taking into account the uncertainty in the parameter estimates of the imputation model

does not make this method proper.

A slightly different distance measure was proposed by van Buuren and Groothuis-

Oudshoorn (2011)

dMICE
i,i′ = |wiϑ̇−wi′ϑ̃|, (7)

where ϑ̃ is the posterior mean of the parameters of the reverse regression model, and ϑ̇ is

a draw from the corresponding posterior distribution (for a description, see Vink, Frank,

Pannekoek and van Buuren, 2014).

Although simulation results imply that PMM versions of kNN imputation seem to

work well (e.g., Andridge and Little, 2010; Yu, Burton and Rivero-Arias, 2007; Vink et al.,

2014), it is not clear if kNN imputation techniques are proper imputation methods. In fact,

Schenker and Taylor (1996) state that if the number of possible donors is too small, the M

imputations will be correlated leading to a higher variance of the estimator of interest. On

the other hand, increasing the number of neighbors of a case to be imputed (the query

point), may lead to biased estimators due to a violation of the MLCAR assumption.

In a simulation study using fixed (three and ten) possible donors they found a slight

undercoverage of the interesting parameter of two to three percent. The missing data in

their study are MCAR. Similar results are reported in a simulation study of de Jong, van

Buuren and Spiess (2014) with missing data being MAR, who found no (obvious) bias

but mild to moderate undercoverage using the kNN imputation method with k = 3.

Dahl (2007) shows that under some mild conditions and using a distance measure

which is topologically equivalent to Euclidian distance, imputations based on kNN tech-

niques can be interpreted as draws from the conditional distribution of the incompletely

observed variable given observed values, with decreasing correlations if n → ∞, k :=

k(n) = nr and r ∈ (0, 1). Dahl (2007) proposes k(n) =
√
n as this is ‘canonical in the

sense of representing the mid-point of the interval’ defined by r ∈ (0, 1) (Dahl, 2007, p.
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5915).

However, convergence rates to the true distribution may vary at different query points,

depending on whether regions are thinned out by the response mechanism or not, which

is not the case if the missing data are MCAR, as in the simulation study of Schenker and

Taylor (1996).

A distance measure proposed by Dahl (2007) is

dDi,i′ = |(wi −wi′)
′||ϑ̂|. (8)

Obviously, dDi,i′ is zero if (wi −wi′)
′ = 0 or when ϑ̂ is zero. Differences in variables with

strong predictive effects are given higher weight than differences in variables with small

effects. Compensatory effects or differences are not taken into account.

A non-parametric version of kNN imputation provided by function aregImpute as part

of the R package HMISC (Harrell, 2015) is based on first drawing a bootstrap sample from

the completely observed part of the sample and then fitting a flexible additive model while

finding the transformation of the variable with missing values and of all functions of the

predictors, fj(wj) (j = 1, 2, . . .), that maximizes the coefficient of determination. For

a description, see Harrell (2015) and the literature cited therein. At least two ways to

proceed are possible: Either draw another bootstrap sample from the predictions for x1 in

the completely observed part of the sample, adopt a distance measure, calculate distances

in the predicted values of this Bootstrap sample and the predicted values for the not

observed values to draw a donor (denoted as aI-PMM in Section 5). Or just use the

predictions from the first Bootstrap step and the predictions for the not observed values

to generate imputations (denoted as aI-boot in Section 5). The distance measure adopted

is similar to (6) with wi and wi′ replaced by their corresponding functions. Unlike in

the above described kNN techniques, donors are now randomly drawn from multinomial

distributions with probabilities inversely proportional to the distances. Repeating these

steps M times generates M imputations.

A difference between aregImpute and the GAMLSS imputation method described in
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Section 3.3 is that the former fixes the number of knots of the transformation functions

to a default fixed value, while GAMLSS optimizes the smoothing parameter of hij using

cross-validation. The latter strategy may be superior as the performance of a smoother

is extremely sensitive to the appropriateness of the chosen smoothing parameter.

Most standard analysis software packages or functions offer one of these or a similar

kNN technique, often with a default value for k, like k = 5 (e.g., SAS Institute Inc., 2013,

p. 5074; or MICE, Vink, Frank, Pannekoek and van Buuren, 2014).

4 Simulation Experiment: Description

The multiple imputation techniques described in Section 3 differ with respect to the

generality of situations for which they are proposed. However, they are all multiple

imputation techniques taking advantage of Rubin’s (1987) work. They all assume missing

data to be MCAR or MAR, most are implemented in available software and they are all

– the exception being gamlss – easily available from within the software R. Although the

persuasiveness of the justifications of MI techniques varies, they all share the property

that no proof exists showing that inferences based on the multiply imputed data sets and

the combining rules (1) are valid in all situations of potential interest.

Due to the lack of theoretical results, the properties of scientifically interesting estima-

tors based on multiply imputed data sets can systematically be studied only in simulation

experiments.

In our simulation experiment, we consider the situation of incompletely observed pre-

dictor variables in a regression model of scientific interest with misspecified imputation

models. Validity of subsequent analyses actually means (approximate) unbiasedness or

consistency of point and variance estimators as well as that the actual coverage of true

values by confidence intervals is close to the nominal coverage. A secondary criterion is

the relative efficiency or precision of (approximately) unbiased estimators, which amounts

to comparing their variances.
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Throughout, we consider a multiple linear regression problem with missing values

in one predictor for simplicity. The ‘true’ DGP realizes a linear regression model with

normally distributed homoscedastic errors. This is the usual regression model adopted in

applications, although the normality assumption is not necessary in larger samples. All

simulations were run within R (R Core Team, 2015).

Each simulation consists of several steps. In a first step, data are generated according

to the linear regression model

yi = β0 + xi,1β1 + xi,2β2 + xi,3β3 + εi, εi ∼ N(0, σ2) for all i = 1, . . . , n , (9)

with sample sizes n = 40, n = 100 or n = 1000. The true values of the parameters

weighting the predictors are β0 = 0, β1 = 1 and β2 = β3 =
√

2/3. The error variance σ2

was chosen so that the coefficient of determination, R2, was between 0.3 and 0.7.

An important condition with respect to the imputation model is the distribution of

the predictor variable with missing values. The only variable with missing values was x1.

Thus, values for this variable were generated either from a normal distribution, a χ2- or

a t-distribution, in the two latter cases with three degrees of freedom. Note that the true

imputation regression model of x1 on y and the other predictors can not be a linear model

in the latter two cases (Spanos, 1995). Hence, a corresponding normal linear imputation

model is a misspecified model. All other predictor variables were generated mutually

independent according to normal distributions in all but the case with x1 following a

heavy-tailed t-distribution: In that experiment covariates were generated according to a

multivariate t-distribution.

As the golden standard, a homoscedastic linear regression model was estimated based

on the data set without missing values. In the results section, the corresponding condition

will be denoted as COM.

In the second step, missing values were generated. Throughout the missing values

are MAR and were generated according to one of two discrete or two continuous missing

data mechanisms (MDM). More precisely, the probability of observing a value of x1,
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P(r = 1|v), r being the response indicator with r = 1 if x1 is observed and r = 0

otherwise, is a function of κ = v′γ, where v = (x2 x3 y yx3)
′ and γ reflects the influence

of x2, x3, y and the interaction of y and x3 on the probability of observing x1. Note that,

conditional on y, x1 had no effect on the response probability, so the missing values are

MAR if y is included in the imputation models. A set of thresholds (discrete MDM) or

a constant (continuous MDM) was chosen such that the fraction of observed values was

approximately 0.65. The categorical functions realized three and four response classes

respectively, simulating the areas with lowest response probabilities either on one side or

in the center of the range of x1. Figure 1 shows the two categorical mechanisms.

In case of the discrete missing data mechanisms, γ = (−.4 − .4 .5 .1)′. The continu-

ous response functions were smooth versions of their categorical counterparts. Since the

general results are virtually the same for the categorical and the continuous missing data

mechanisms, results based on the latter are omitted to save space.

As a standard ad hoc technique, complete case analysis is adopted, i.e., only the

completely observed cases are used to estimate a linear regression model. Results under

this strategy will be denoted as CCA.

Subsequent to generating the missing values in each simulation and conducting CCA,

as a third step, the different imputation techniques described in Section 3 are adopted to

generate multiply (M = 10) completed data sets. In the last step, the multiply imputed

data sets were used to estimate model (9).

Multiple imputations generated according to the Bayesian linear model as described

in Section 3.1 were generated via the package MICE (version 2.22) (van Buuren and

Groothuis-Oudshoorn, 2011) available from within R. The corresponding results will be

denoted as LM.

Results based on generating imputations with AMELIA (version 1.7.3) (Honaker, et

al., 2011; see Section 3.2) are denoted as amelia, and results based on the robust impu-

tation function IRMI included in package VIM (version 4.3.0) (Templ et al., 2014; see
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Figure 1: Response probability as a function of κ = v′γ (left) and scatterplot of y against

η = x′β with observed (•) and missing (×) values of x1 (right), n=200. The upper mechanism

consists of three classes that generate most missing values above the median value of x1; the

bottom mechanism, with four classes, systematically generates missing values in a central region

within the range of x1.
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Section 3.4) are denoted as irmi. Imputation by generalized additive models (Section 3.3)

is currently not available in any R library, but was implemented for the current simulation

study. Results are denoted by gamlss.

In Section 3.5 different kNN techniques are described, based on different distance

measures. Results based on dPMM
i,i′ are denoted as dpmm, results based on dDi,i′ are denoted

as dD and those based on the distance measure as implemented in MICE (van Buuren

and Groothuis-Oudshoorn, 2011) are denoted as dmice. The former two techniques were

implemented for this simulation experiment in R, imputations according to the latter

technique were generated using MICE. For each of the different kNN versions, different

sizes of the donor pools were adopted, namely k = 1, 3, 5, 10, 20 and k =
√
n.

In addition, the two versions of a more robust kNN technique available in function

aregImpute (version 3.16-0), as part of the R-package HMISC (Harrell, 2015) and de-

scribed in Section 3.5 were tested as well. The Bayesian version will be denoted as

aI-PMM, the bootstrap version as aI-boot. Both versions worked only with the default

k = 3. Every attempt to set a different number for k resulted in a warning and termination

of the program.

The evaluation of the imputation methods is based on 1000 simulated data sets under

each condition. It should be noted that not all imputation techniques combined with

the estimation of the model converged. The maximum number of failures was 15, i.e.,

1.5% of the simulations in case of a t-distributed variable with missing values, n = 1000

adopting gamlss. In general, gamlss failed most often (six or seven times under most of

the conditions), but it was not the only technique: Several kNN techniques also resulted in

termination of the program under some conditions, usually in two out of 1000 simulations.

To save space, we only report the results with respect to β1 weighting the predictor with

missing values. The results for each condition considered are the mean of the estimates for

the regression parameters (m(β̂)), the square root of the mean of their estimated variances

(m(ŝd)), their standard deviation over the simulations (sd) and the actual coverage of the
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true values by 0.95 confidence intervals (COV). As each simulation is an independent

Bernoulli experiment with respect to the confidence interval covering the true value or

not, a symmetric 0.95 interval around the nominal coverage of 0.95 is [0.936, 0.964]. Thus

the actual coverage should be roughly within this interval if all assumption are met.

5 Results

Since the robustness of imputation techniques is one of the main topics, we simulated

one scenario in which all the variables were multivariate normally distributed, and two

scenarios in which they were not. In the former case, the parametric Bayesian linear

imputation model (LM) and the parametric imputation model underlying amelia are

correctly specified models and thus we expect that these two models are the best choice for

generating imputations with respect to bias and efficiency. In the non-normal cases, these

imputation models are misspecified. Hence one would expect that imputation techniques

based on semi- or non-parametric techniques like kNN, aregImpute or gamlss outperform

LM and amelia.

5.1 Normal covariates

Table 1 presents the results using the three class MDM (upper panel of Figure 1) for three

increasing sample sizes based on the complete data set (COM), the completely observed

cases (CCA) and the multiply imputed data sets.

A first result to note from Table 1 is that with but one exception, the estimator for β

weighting x1 seems to be downward biased for n = 40, the exception being the estimator

under the amelia condition which seems to be unbiased.

As expected, without missing values (condition COM), the results are acceptable with

respect to coverage for all sample sizes, and with respect to bias if n ≥ 100. In addition,

estimates for β under this condition have the smallest variance. Since the missing data
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n=40 n=100 n=1000

Technique m(β̂) sd m(ŝd) COV m(β̂) sd m(ŝd) COV m(β̂) sd m(ŝd) COV

COM 0.987 0.288 0.288 0.954 0.991 0.180 0.176 0.939 1.003 0.056 0.054 0.940

CCA 0.843 0.362 0.348 0.929 0.853 0.224 0.210 0.891 0.863 0.067 0.064 0.449

LM 0.918 0.373 0.372 0.958 0.972 0.224 0.221 0.948 0.997 0.068 0.066 0.942

amelia 1.000 0.392 0.374 0.929 1.010 0.226 0.218 0.941 1.002 0.068 0.066 0.942

dpmm, k = 1 0.924 0.406 0.384 0.929 0.966 0.252 0.224 0.917 1.007 0.073 0.064 0.920

dpmm, k = 3 0.890 0.393 0.382 0.938 0.950 0.247 0.220 0.925 0.996 0.072 0.062 0.918

dpmm, k = 5 0.862 0.384 0.383 0.931 0.930 0.246 0.223 0.922 0.993 0.073 0.062 0.903

dpmm, k = 10 0.796 0.358 0.391 0.938 0.898 0.241 0.227 0.924 0.990 0.072 0.062 0.910

dpmm, k = 20 0.669 0.314 0.401 0.916 0.837 0.232 0.233 0.904 0.987 0.072 0.062 0.913

dpmm, k =
√
n 0.848 0.378 0.386 0.936 0.899 0.243 0.227 0.924 0.970 0.073 0.063 0.893

dD, k = 1 0.913 0.411 0.344 0.901 0.957 0.249 0.197 0.884 0.988 0.077 0.056 0.843

dD, k = 3 0.857 0.381 0.370 0.929 0.919 0.237 0.212 0.925 0.972 0.073 0.060 0.881

dD, k = 5 0.816 0.368 0.376 0.925 0.892 0.233 0.218 0.925 0.975 0.073 0.062 0.887

dD, k = 10 0.739 0.340 0.391 0.933 0.842 0.229 0.227 0.896 0.951 0.072 0.063 0.866

dD, k = 20 0.627 0.294 0.402 0.906 0.773 0.219 0.234 0.851 0.931 0.072 0.064 0.828

dD, k =
√
n 0.795 0.360 0.383 0.938 0.840 0.230 0.226 0.902 0.924 0.071 0.065 0.765

dmice, k = 1 0.946 0.423 0.376 0.910 0.985 0.251 0.219 0.909 1.004 0.075 0.064 0.912

dmice, k = 3 0.922 0.394 0.374 0.927 0.968 0.243 0.219 0.919 0.999 0.073 0.064 0.920

dmice, k = 5 0.885 0.389 0.378 0.938 0.948 0.243 0.219 0.922 0.990 0.073 0.064 0.922

dmice, k = 10 0.818 0.367 0.386 0.943 0.912 0.243 0.222 0.930 0.997 0.072 0.064 0.919

dmice, k = 20 0.682 0.311 0.399 0.919 0.851 0.231 0.229 0.904 0.986 0.072 0.064 0.910

dmice, k =
√
n 0.871 0.387 0.378 0.938 0.912 0.240 0.222 0.931 0.979 0.072 0.064 0.902

aI-PMM 0.857 0.396 0.400 0.936 0.947 0.243 0.226 0.938 0.994 0.074 0.065 0.918

aI-boot 0.819 0.375 0.403 0.943 0.910 0.245 0.234 0.934 0.992 0.073 0.063 0.918

irmi 0.778 0.355 0.411 0.946 0.788 0.212 0.250 0.917 0.808 0.066 0.076 0.267

gamlss 0.852 0.404 0.464 0.941 1.008 0.243 0.244 0.929 1.001 0.070 0.068 0.939

Table 1: Estimation results based on the complete data set (COM), completely observed cases

(CCA) and multiply imputed datasets. The fraction of observed x1 values is 0.65 and the true

value of β is 1. Multivariate Normal data and discrete MDM with three classes.
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are MAR, complete case analysis (condition CCA) leads to invalid results as expected,

i.e., severely biased estimates and unacceptable low coverage rates, which gets even worse

with increasing sample size.

On the other hand, imputations based on the parametric Bayesian model (condition

LM) or the mixed Bootstrap/EM approach implemented in amelia work well for sample

sizes n ≥ 100. If n = 40 coverage is acceptable under condition LM, although the

estimates seem to be biased, and under condition amelia, in which case estimates seem

to be unbiased, but the coverage is too low due to an underestimation of the variance.

There is a general pattern of results common to all kNN techniques: With an increasing

number of potential donors, the downward bias in the estimates seems to increase while

at the same time variances are getting smaller and the estimated variances tend to be

larger. In all cases if n ≥ 100, coverage rates are too low. As a consequence, a true null

hypothesis would be rejected far too often. If n = 40, coverage rates are in an acceptable

range in a few cases, but there is a general tendency of confidence intervals being too short.

With just a few exceptions, the estimates are downward biased. This bias decreases with

increasing sample size and decreasing number of potential donors.

Comparing the results under conditions dpmm, dD and dmice one can conclude, that

they are rather similar, with a small advantage of dpmm and dmice over dD with respect

to bias of the estimates and coverage rates. Results based on aI-PMM and aI-boot are

within the range of results of the other kNN methods. Note that for both kNN methods,

the number of neighbors is fixed at k = 3.

Finally, estimates under condition irmi are severely biased for all sample sizes while

variances are overestimated. However, overestimation masks the bias only in the small

sample case, leading to an acceptable coverage rate. For n ≥ 100 the coverage rate is too

small and for n = 1000 it is unacceptable low.

On the other hand, results under condition gamlss are mixed. If n = 40, the estimator

for β is biased but this seems to be masked by an overestimation of its variance so that
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the coverage is acceptable. If n = 100, the bias vanished, but coverage is too low. If

n = 1000, the results are acceptable.

In general, it seems not necessarily to be better to adopt some imputation method than

to just ignore the missing data. In fact, choosing an inappropriate imputation technique

may lead to estimators with larger bias and coverage rates which are too low.

Table 2 presents results based on the four class MDM (lower panel of Figure 1).

This mechanism generates most missing values in the center of the range of x1. Again

all variables are multivariate normally distributed and thus results under conditions LM

and amelia are expected to be acceptable. The different kNN techniques should lead to

results which are closer to being acceptable, as in contrast to the three class MDM now

the distributions of potential donors tend to be closer to being symmetric around the true

value to be estimated.

The results in Table 2 show a similar pattern as in Table 1, although the estimates

seem not to be systematically downward biased.

Again, under condition COM the results are acceptable with respect to coverage and

now also with respect to bias for all sample sizes, and the estimates for β have the smallest

variance. CCA leads to severely biased estimates and coverage rates which, although

acceptable for n = 40, are too low if n = 100 and disastrous if n = 1000. This seems not

to be due to an underestimation of the variance but rather to biased estimates.

On the other hand, imputations under conditions LM or amelia work well, although

estimates are slightly biased in small samples. This bias vanishes with increasing n,

however, and the coverage under condition LM is too low for n = 100 and for n = 40

under condition amelia. The slight undercoverage seems to be due to a combined effect

of a small bias and a slight underestimation of variances.

According to the kNN techniques, a similar pattern as observed in Table 1 emerges,

although now estimates are upward biased for small k and downward biased for large k.

Hence there seems to exist an optimal number of possible donors, which is, however, not
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n=40 n=100 n=1000

Technique m(β̂) sd m(ŝd) COV m(β̂) sd m(ŝd) COV m(β̂) sd m(ŝd) COV

COM 0.999 0.302 0.288 0.949 0.990 0.180 0.176 0.944 1.000 0.057 0.056 0.941

CCA 1.164 0.394 0.392 0.940 1.152 0.230 0.233 0.917 1.158 0.069 0.071 0.405

LM 0.976 0.343 0.339 0.942 0.987 0.209 0.203 0.936 0.999 0.063 0.063 0.939

amelia 1.073 0.366 0.334 0.922 1.025 0.214 0.202 0.941 1.004 0.063 0.062 0.942

dpmm, k = 1 1.014 0.370 0.338 0.916 1.000 0.217 0.204 0.931 1.002 0.067 0.063 0.935

dpmm, k = 3 1.003 0.361 0.336 0.915 0.996 0.215 0.201 0.930 1.002 0.067 0.061 0.924

dpmm, k = 5 0.988 0.357 0.338 0.931 0.994 0.214 0.200 0.921 1.001 0.067 0.061 0.928

dpmm, k = 10 0.950 0.343 0.342 0.940 0.985 0.214 0.201 0.928 1.000 0.067 0.061 0.922

dpmm, k = 20 0.854 0.304 0.350 0.947 0.958 0.208 0.204 0.936 0.999 0.067 0.060 0.926

dpmm, k =
√
n 0.984 0.353 0.337 0.930 0.986 0.213 0.201 0.930 0.998 0.067 0.060 0.929

dD, k = 1 1.014 0.369 0.315 0.895 1.000 0.218 0.186 0.905 1.000 0.071 0.055 0.877

dD, k = 3 0.983 0.350 0.328 0.926 0.985 0.211 0.194 0.923 0.996 0.067 0.058 0.916

dD, k = 5 0.957 0.341 0.334 0.936 0.974 0.208 0.196 0.933 0.994 0.066 0.059 0.921

dD, k = 10 0.904 0.320 0.342 0.950 0.951 0.205 0.199 0.930 0.989 0.065 0.060 0.927

dD, k = 20 0.818 0.287 0.351 0.952 0.913 0.197 0.204 0.927 0.982 0.064 0.060 0.927

dD, k =
√
n 0.949 0.340 0.335 0.941 0.952 0.205 0.199 0.929 0.975 0.064 0.060 0.922

dmice, k = 1 1.034 0.369 0.331 0.917 1.008 0.217 0.197 0.922 1.002 0.070 0.060 0.919

dmice, k = 3 1.019 0.367 0.333 0.923 1.007 0.215 0.198 0.928 1.002 0.069 0.060 0.923

dmice, k = 5 1.009 0.365 0.334 0.925 1.004 0.212 0.198 0.933 1.002 0.068 0.060 0.920

dmice, k = 10 0.967 0.347 0.339 0.932 0.994 0.212 0.200 0.930 1.001 0.068 0.060 0.922

dmice, k = 20 0.860 0.309 0.350 0.952 0.967 0.208 0.202 0.929 1.000 0.068 0.060 0.924

dmice, k =
√
n 0.997 0.357 0.335 0.928 0.993 0.213 0.199 0.930 0.999 0.067 0.060 0.924

aI-PMM 0.980 0.359 0.340 0.930 0.991 0.214 0.200 0.929 1.000 0.068 0.060 0.922

aI-boot 0.959 0.348 0.346 0.941 0.973 0.214 0.205 0.935 0.999 0.067 0.062 0.932

irmi 1.026 0.361 0.364 0.947 1.021 0.209 0.219 0.954 1.035 0.065 0.067 0.925

gamlss 0.942 0.369 0.440 0.949 1.034 0.220 0.216 0.939 1.007 0.064 0.063 0.941

Table 2: Estimation results based on the complete data set (COM), completely observed cases

(CCA) and multiply imputed datasets. The fraction of observed x1 values is 0.65 and the true

value of β is 1. Multivariate Normal data and discrete MDM with four classes.
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√
n as proposed by Dahl (2007). If n = 40, coverage rates are in an acceptable range

for large k, which seems to be due to an overestimation of the variance, such that biases

are masked. In general however, variances seem to be underestimated leading to intervals

which are too short in large samples.

Estimates under condition irmi are slightly biased for all sample sizes which seems to

be masked by a small upward bias of the variance estimates if n ≤ 100. As a consequence,

coverage rates are acceptable for n ≤ 100, but not for n = 1000. Under condition gamlss

estimates for β are slightly biased which seems to be masked by an overestimation of its

variance so that the coverage is acceptable for n = 40. If n ≥ 100, the bias diminishes

and the coverage is acceptable.

The results of this section imply that, not surprisingly, complete case analysis is invalid

in general if missing values in a predictor variable are MAR. But the results also show

that kNN methods can not be recommended either as they tend to lead to undercoverage

and thus falsely rejecting true null hypotheses too often. Surprisingly, the results with

respect to coverage rates are less pronounced in small samples. In these cases biases of

the estimates for β tend to be masked by overestimated variances, which corresponds to

the ‘self correcting’ property of MI (Little and Rubin, 2002).

Fully parametric imputation techniques like those based on LM or amelia seem to

be acceptable for the situations simulated in this section. This, however, is expected as

these methods follow Rubin’s (1987) theory and all models are correctly specified. In small

samples they tend to lead to biased estimates, the bias being masked by an overestimation

of variances.

The robust methods (conditions irmi and gamlss) behave rather differently. Results

under condition irmi can be acceptable or disastrous with respect to bias and coverage in

large samples. Under condition gamlss coverage rates are acceptable in most cases, but

the estimates for β tend to be biased in small samples.

Thus, CCA analyses, all kNN techniques and the technique implemented in irmi seem
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to have structural problems which are partly masked in small samples but become obvious

in larger samples. On the other hand, LM, amelia or gamlss also seem to have problems

in small samples, which tend to be masked by overestimated variances, and vanish if the

sample size increases. Hence these problems seem not to be structural but rather small

sample problems.

Adopting the continuous MDMs, the general pattern of results did not change. Hence

these results are omitted. Since the kNN technique using Dahl’s (2007) distance measure

was found to be inferior to the other kNN techniques, we omit these results in the next

section.

5.2 Non-normal covariates

As a first example of non-normal distributed predictor variables, x1 was generated from

a χ2 distribution with three degrees of freedom. Missing data were generated using the

three-class MDM. Results are presented in Table 3.

As expected, analysis based on the data set without missing values leads to valid

inferences, whereas CCA leads to biased estimates and coverage rates which are too low.

However, the results in Table 3 also show that with only a few exceptions all imputation

techniques fail to allow valid inferences. Notably, LM and amelia lead to unacceptable

coverage rates getting worse with increasing sample size. In this case, there is obviously

no ‘self-correcting’ property at work.

In contrast, kNN techniques seem to work better. Although in the n = 1000 case

coverage rates are too small in general due to underestimated variances, in case of n = 40

and n = 100 kNN techniques with large k may lead to acceptable coverages. If n = 40,

this is mainly due to overestimated variances, whereas for n = 100 results are acceptable

with respect to bias and coverage if k = 10, for both techniques dpmm and dmice.

Imputation technique irmi leads to invalid inferences with respect to coverage for n = 100

and completely breaks down for n = 1000. For all samples sizes, the estimates for β are
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n=40 n=100 n=1000

Technique m(β̂) sd m(ŝd) COV m(β̂) sd m(ŝd) COV m(β̂) sd m(ŝd) COV

COM 0.995 0.123 0.122 0.958 1.001 0.072 0.072 0.949 0.999 0.022 0.022 0.950

CCA 0.947 0.220 0.188 0.928 0.965 0.118 0.108 0.931 0.974 0.035 0.032 0.866

LM 1.090 0.219 0.195 0.908 1.105 0.124 0.102 0.819 1.097 0.038 0.029 0.139

amelia 1.140 0.231 0.199 0.859 1.127 0.126 0.105 0.782 1.100 0.038 0.031 0.160

dpmm, k = 1 1.065 0.261 0.199 0.849 1.052 0.130 0.097 0.836 1.009 0.037 0.027 0.853

dpmm, k = 3 1.034 0.251 0.226 0.921 1.050 0.129 0.106 0.871 1.012 0.036 0.027 0.839

dpmm, k = 5 0.994 0.241 0.245 0.949 1.040 0.128 0.114 0.900 1.016 0.036 0.027 0.831

dpmm, k = 10 0.907 0.229 0.273 0.958 1.004 0.129 0.131 0.944 1.021 0.036 0.028 0.833

dpmm, k = 20 0.750 0.201 0.297 0.938 0.929 0.121 0.151 0.961 1.027 0.037 0.030 0.820

dpmm, k =
√
n 0.976 0.242 0.250 0.954 1.004 0.126 0.131 0.946 1.027 0.037 0.031 0.827

dmice, k = 1 1.077 0.258 0.190 0.862 1.054 0.134 0.097 0.843 1.009 0.037 0.028 0.854

dmice, k = 3 1.046 0.254 0.216 0.911 1.051 0.131 0.106 0.873 1.013 0.037 0.029 0.860

dmice, k = 5 1.011 0.248 0.235 0.936 1.043 0.131 0.113 0.902 1.016 0.036 0.029 0.857

dmice, k = 10 0.919 0.234 0.268 0.963 1.007 0.131 0.129 0.937 1.021 0.037 0.030 0.849

dmice, k = 20 0.754 0.199 0.298 0.941 0.935 0.125 0.150 0.960 1.027 0.037 0.031 0.821

dmice, k =
√
n 0.992 0.242 0.245 0.951 1.008 0.129 0.130 0.942 1.028 0.037 0.032 0.842

aI-PMM 1.014 0.264 0.242 0.932 1.044 0.132 0.110 0.882 1.007 0.037 0.030 0.889

aI-boot 0.987 0.249 0.252 0.948 1.035 0.129 0.112 0.900 1.006 0.037 0.027 0.853

irmi 0.752 0.233 0.318 0.944 0.762 0.127 0.182 0.839 0.714 0.041 0.054 0.000

gamlss 0.878 0.302 0.371 0.950 0.994 0.172 0.180 0.927 1.008 0.040 0.040 0.946

Table 3: Estimation results based on the complete data set (COM), completely observed cases

(CCA) and multiply imputed data sets. The fraction of observed x1 values is 0.65 and the true

value of β is 1. x1 is χ2-distributed with three degrees of freedom and discrete MDM with three

classes.

severely biased.

The only imputation function that seems to lead to acceptable results with respect to

coverage even if n = 1000 is gamlss. It leads to biased estimates if n = 40, but this bias

vanishes with increasing n. However, the robustness of this imputation technique comes

at the price of relatively large variances in the small and medium sample sizes.
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In a simulation study of He and Raghunathan (2009), all tested imputation methods

broke down when the distribution of the variable to be imputed was strongly heavy tailed

(see also de Jong, van Buuren and Spiess, 2014). Therefore, in a next step, all the

covariates were generated according to a t-distribution with three degrees of freedom.

Again adopting the three-class MDM to generate missings in x1, the results are presented

in Table 4.

n=40 n=100 n=1000

Technique m(β̂) sd m(ŝd) COV m(β̂) sd m(ŝd) COV m(β̂) sd m(ŝd) COV

COM 0.987 0.354 0.349 0.942 0.995 0.196 0.199 0.955 0.999 0.058 0.056 0.950

CCA 0.825 0.482 0.437 0.924 0.865 0.255 0.242 0.914 0.893 0.075 0.068 0.636

LM 0.926 0.526 0.488 0.935 1.003 0.272 0.264 0.953 1.040 0.079 0.070 0.877

amelia 0.990 0.557 0.508 0.921 1.036 0.275 0.267 0.940 1.042 0.080 0.071 0.881

dpmm, k = 1 0.888 0.542 0.500 0.920 0.948 0.299 0.276 0.929 1.004 0.089 0.073 0.896

dpmm, k = 3 0.860 0.511 0.495 0.936 0.928 0.288 0.273 0.936 0.999 0.087 0.071 0.894

dpmm, k = 5 0.828 0.497 0.495 0.936 0.912 0.287 0.273 0.937 0.995 0.087 0.072 0.897

dpmm, k = 10 0.782 0.464 0.494 0.949 0.885 0.275 0.276 0.942 0.989 0.087 0.072 0.900

dpmm, k = 20 0.685 0.416 0.496 0.940 0.842 0.261 0.276 0.937 0.979 0.086 0.072 0.900

dpmm, k =
√
n 0.823 0.487 0.492 0.935 0.882 0.276 0.275 0.939 0.970 0.086 0.073 0.889

dmice, k = 1 0.912 0.578 0.493 0.901 0.962 0.311 0.266 0.916 1.005 0.092 0.069 0.863

dmice, k = 3 0.880 0.526 0.487 0.928 0.946 0.297 0.264 0.922 1.001 0.087 0.070 0.880

dmice, k = 5 0.853 0.511 0.488 0.936 0.930 0.289 0.264 0.926 0.997 0.087 0.071 0.894

dmice, k = 10 0.796 0.477 0.491 0.947 0.898 0.274 0.267 0.937 0.991 0.085 0.071 0.893

dmice, k = 20 0.690 0.416 0.495 0.941 0.852 0.263 0.270 0.931 0.981 0.085 0.072 0.901

dmice, k =
√
n 0.846 0.492 0.490 0.937 0.899 0.273 0.267 0.938 0.972 0.086 0.072 0.885

aI-PMM 0.787 0.510 0.522 0.946 0.880 0.292 0.287 0.942 0.959 0.090 0.082 0.906

aI-boot 0.763 0.476 0.519 0.944 0.844 0.279 0.296 0.944 0.954 0.089 0.085 0.913

irmi 0.828 0.477 0.502 0.953 0.879 0.251 0.280 0.953 0.911 0.075 0.079 0.809

gamlss 0.744 0.538 0.562 0.886 0.919 0.330 0.331 0.924 0.895 0.190 0.168 0.948

Table 4: Estimation results based on complete data set (COM), completely observed cases

(CCA) and multiply imputed data sets. The fraction of observed x1 values is 0.65 and the true

value of β is 1. Multivariate t-distributed covariates with three degrees of freedom and discrete

MDM with three classes.

28



Obviously, none of the imputation techniques leads to acceptable results if n = 1000.

In that case, all the imputation techniques lead to biased estimates or underestimated

variances. An outstanding example is gamlss which leads to biased estimates but at the

same time to underestimated variances. A closer look on single simulation results reveals

that this is due to some extreme cases where estimates of β are far to small, which is the

consequence of very bad model fits.

For smaller samples sizes, coverages may be acceptable even with biased estimates

because variances are overestimated, as for aI-PMM, aI-boot with k = 3 and irmi. On

the other hand, gamlss leads to biased estimates and low coverages. The parametric

imputation techniques LM and amelia lead to biased estimates and slight undercoverage

for n = 40 but work well if n = 100. The pattern for dpmm and dmice is similar to what

we observed before: With increasing k, the bias and the relation of true to estimated

variance increases, eventually leading to acceptable coverages in single cases, like dmice

or dpmm with k = 10 and n = 40.

6 The effect of functions of music on music prefer-

ences.

As an illustration, we estimated a linear regression model of the degree of preferences for

ones own favourite music style on the degree to which the corresponding kind of music

serves the needs of the listener (‘functions of music’) following Schäfer and Sedlmeier

(2009) and based on the data provided by these authors.

More precisely, the dependent variable was the mean over six statements measured via

10-point Likert scales (‘I like this music’, ‘I couldn’t live without this music’, ‘I just need

this music’, ‘I’m a passionate listener of this music’, ‘I regularly visit clubs or concerts to

listen to this music’, ‘I usually spend a lot of money to purchase this music’) with the poles

‘not agree at all’ and ‘completely agree’ and representing different aspects of the same
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‘music preference’ construct (see Schäfer and Sedlmeier, 2009, for details). Independent

variables were functions of music, again measured on 10-point Likert scales with extreme

values ‘not agree at all’ and ‘completely agree’. The statements (‘functions of music’)

used in the following analysis are ‘Expresses my values’ (values), ‘Gives me information’

(inform), ‘Expresses my identity’ (identity), ‘Puts me in a good mood’ (mood), ‘Makes me

feel ecstatic’ (ecstatic), ‘Helps me meet people’ (contact) and ‘Is music I can appreciate

as art’ (art). Additionally we included age as a covariate.

Data were collected via the internet and the questionnaires were completed online

(for more details, see Schäfer and Sedlmeier, 2009). In our analysis, we used the data

of n = 476 completely observed units. Since we want to illustrate the effects of the

different imputation techniques we first estimated the regression parameters based on the

full sample, and then generated 167 missing values in the covariate ‘values’, according to

the three-class missing mechanism described in Section 4. Thus the missing values are

MAR.

The results for COM in Table 5 imply that all the variables included with but two

exceptions seem to have a positive effect on the degree of music preference (α = 0.05). The

exceptions are the function ‘Gives me information’ which seems to have no (significant)

effect and age which seems to have a negative effect. Not surprisingly, the results under the

CCA strategy would imply a different pattern: Instead of the function of music expressing

ones values, now the function that music provides information seems to have an effect.

If the data set is multiply imputed with the Bayesian linear model, we would conclude

that – in contrast to the analysis under COM – the function ‘values’ has no effect. The

data set imputed with AMELIA would lead to the same conclusions as under the data

set without missing values.

If the incomplete data set is imputed with a kNN technique, then the conclusions vary

even within one technique, depending on the number of neighbours. They can be the

same as for the complete data set (dpmm with k = 1, 5, 20 or k =
√
n or dmice with
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Method Intercept values inform. identity mood ecstatic contact art age

COM 2.606* 0.090* 0.051 0.114* 0.170* 0.107* 0.110* 0.098* -0.042*

CCA 2.441 0.071 0.049 0.097 0.134 0.110 0.154 0.081 -0.023

LM 2.682 0.074 0.051 0.117 0.165 0.110 0.112 0.099 -0.042

amelia 2.689 0.075 0.049 0.118 0.163 0.110 0.113 0.100 -0.042

dpmm, k = 1 2.642 0.084 0.048 0.117 0.164 0.108 0.113 0.099 -0.041

dpmm, k = 3 2.641 0.071 0.054 0.120 0.169 0.110 0.112 0.100 -0.042

dpmm, k = 5 2.635 0.092 0.044 0.115 0.165 0.109 0.113 0.098 -0.042

dpmm, k = 10 2.639 0.075 0.053 0.119 0.169 0.110 0.111 0.100 -0.042

dpmm, k = 20 2.642 0.080 0.052 0.118 0.166 0.109 0.112 0.099 -0.042

dpmm, k =
√
n 2.630 0.074 0.054 0.120 0.170 0.109 0.110 0.100 -0.042

dmice, k = 1 2.651 0.087 0.046 0.115 0.165 0.109 0.112 0.098 -0.042

dmice, k = 3 2.667 0.082 0.049 0.117 0.162 0.110 0.113 0.099 -0.042

dmice, k = 5 2.670 0.087 0.047 0.116 0.163 0.110 0.111 0.099 -0.042

dmice, k = 10 2.650 0.079 0.052 0.118 0.166 0.110 0.111 0.099 -0.042

dmice, k = 20 2.639 0.074 0.055 0.119 0.167 0.110 0.111 0.100 -0.041

dmice, k =
√
n 2.607 0.083 0.051 0.118 0.169 0.109 0.111 0.099 -0.041

irmi 2.669 0.058 0.061 0.123 0.172 0.108 0.111 0.100 -0.042

gamlss 2.653 0.082 0.050 0.116 0.168 0.107 0.112 0.100 -0.042

Table 5: Regression results based on the complete data set (COM), complete case analysis

(CCA), nearest neighbour techniques based on predictive mean matching (pmm) and and mul-

tiply imputed data sets. The fraction of observed values of variable values is 0.65 and the missing

values are generated according to the discrete MDM with three classes. For the analysis COM,

∗ marks effects where a 95% confidence interval does not cover 0. Significance results differing

from the complete data analysis are marked by a surrounding box; n = 476 and number of

imputations m = 10.

k = 1, 3, 5), as under the CCA strategy (dpmm with k = 10 and dmice with k = 20), like

under the imputation technique with the linear Bayesian model (dpmm with k = 3 and

dmice with k = 20) or even completely different in that in addition to all other variables

‘information’ is also significant (dmice with k =
√
n).
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As a general result and in light of the results in Section 5, one may conclude from Table

5 that for an increasing number of neighbours, the estimator of the parameter weighting

the imputed covariate ‘values’ seems to be increasingly biased. Imputation with irmi

results in inferences similar to CCA. In contrast to CCA, however, β̂1 and its standard

error is smaller, whereas the effect of ‘Gives me information’ and it’s standard error are

larger. Imputation with gamlss leads to very similar inferences as under the complete

data condition.

Further, the different imputation techniques are all techniques based on simulated val-

ues. Thus, for one single data set, the conclusions may differ even if we assume that some

of the techniques do not misspecify the true data generating model and the conclusions

even for the same technique may differ if we run the imputation step with other starting

values for the pseudo random number generators. In addition, results may not change

for covariates which are uncorrelated with the imputed variable, but may differ even for

completely observed covariates which are correlated with the imputed one.

7 Discussion

In this paper we compared several versions of kNN imputation, model based Bayesian

imputation as proposed by Rubin (1987) and semi-/nonparametric approaches like irmi

(Templ et al., 2011) and gamlss (de Jong, van Buuren and Spiess, 2014) in different

scenarios via simulations.

The results show that the parametric imputation methods following the suggestions

of Rubin (1987) work in many situations. However, if the imputation models are mis-

specified, then estimates themselves but also their estimated variances tend to be biased.

This may lead to severe undercoverage and thus to rejecting true null hypotheses far too

often.

Usually in regression models, the (conditional) distribution of the dependent variable

is modelled. If one or more of the covariates are affected by missing values, however, then
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a (conditional) distribution of the variables with missing values has to be assumed to

generate imputations. This distribution may be much harder to justify as we are usually

not well prepared for this task. Thus, imputations have to be generated very carefully,

instead of just adopting standard or default techniques.

Several popular software packages offer kNN imputation as one or even the default

option for generating multiple imputations. Advantages of kNN imputation often claimed

are its simplicity, the avoidance of strong parametric assumptions, the ease with which this

technique can be applied to other types of variables and that only eligible and observed

imputations are generated. However, kNN techniques can not be recommended in general:

The optimal k is unknown and it seems not to be possible to clearly identify situations

that allow valid inferences with kNN imputation. Looking at the coverage and bias, there

are small differences between the techniques considered. Further, the strategy proposed

by Dahl (2007) of taking the number of donors as the square root of the sample size does

not lead to better results as compared to the other methods, and the non-parametric

kNN version of Harrell (2015) seems not offer an improvement over standard parametric

versions. Further research could pick up the idea of considering kNN techniques that

optimize k locally, depending on the density of completely observed cases close to the

query point (Schenker and Taylor, 1996). This would make this technique, however, more

complicated and costly.

Imputation technique irmi (Templ et al., 2011) can not be recommended either - it

leads to invalid inferences under most scenarios. This may be due to the automatic outlier

detection: If the missing mechanism thins out certain regions, then this algorithm may

identify ‘outliers’ which are in fact valid values leading to improper imputation models.

This may even be worse if the variable with missing data is not symmetrically distributed.

A technique that allowed valid inferences in most cases considered in this work is

based on the semi-parametric technique gamlss (de Jong, van Buuren and Spiess, 2014).

However, it fails in case of heavy tailed distributions and although promising in general,
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this technique is not implemented yet in a stable version.

The main message of this study is that some available parametric methods, if based

on Rubin’s theoretical arguments, work if misspecification is not severe. Surprisingly, the

self-correcting property claimed, e.g. in Little and Rubin (2002) works to some extent in

small samples, but fails to work in several cases considered here. Then, even CCA may be

closer to acceptable results with respect to coverage than most of the parametric, robust

or semi-parametric techniques.
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