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a b s t r a c t 

Stressful events are thought to impair the flexible adaptation to changing environments, yet the underlying mech- 
anisms are largely unknown. Here, we combined computational modeling and functional magnetic resonance 
imaging (fMRI) to elucidate the neurocomputational mechanisms underlying stress-induced deficits in flexible 
learning. Healthy participants underwent a stress or control manipulation before they completed, in the MRI scan- 
ner, a Markov decision task, frequently used to dissociate model-based and model-free contributions to choice, 
with repeated reversals of reward contingencies. Our results showed that stress attenuated the behavioral sen- 
sitivity to reversals in reward contingencies. Computational modeling further indicated that stress specifically 
affected the use of value computations for subsequent action selection. This reduced application of learned in- 
formation on subsequent behavior was paralleled by a stress-induced reduction in inferolateral prefrontal cortex 
activity during model-free computations. For model-based learning, stress decreased specifically posterior, but 
not anterior, hippocampal activity, pointing to a functional segregation of model-based processing and its modu- 
lation by stress along the hippocampal longitudinal axis. Our findings shed light on the mechanisms underlying 
deficits in flexible learning under stress and indicate that, in highly dynamic environments, stress may hamper 
both model-based and model-free contributions to adaptive behavior. 
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Stressful events are a powerful modulator of learning and memory
 Diamond et al., 2007 ; Luksys and Sandi, 2011 ; Lupien et al., 2009 ;
oozendaal et al., 2009 ; Schwabe et al., 2012 ). In particular, stress is

hought to render learning and memory rather rigid, thus impairing
he flexible adaptation to changing environments ( Raio et al., 2017 ;
chwabe and Wolf, 2013 ; Wirz et al., 2018 ; Schwabe et al., 2013 ). Al-
hough such deficits in flexible learning under stress have far-reaching
mplications, not only for educational and clinical contexts ( de Quervain
t al., 2017 ; Goldfarb and Sinha, 2018 ; Goodman et al., 2012 ; Vogel and
chwabe, 2016 ), the exact mechanisms underlying the stress-induced
mpairments in flexible learning are still largely unclear. 

Successful adaptation to dynamic environments depends on the
omplex interplay of at least two systems: (i) a reflective or goal-
irected system that involves the consideration of prospective future
ourses of action and their consequences and (ii) a reflexive or ha-
itual system that is guided by the retrospective experience of good
nd bad outcomes ( Balleine and O’doherty, 2010 ; Sloman, 1996 ). Ac-
umulating evidence from human and rodent studies shows that stress
nd stress hormones may bias the balance of these systems and fa-
or habitual over goal-directed behavior ( Braun and Hauber, 2013 ;
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ourley et al., 2012 ; Schwabe et al., 2012 ; Schwabe and Wolf, 2009 ,
011 ; Schwabe et al., 2012b ). Computationally, goal-directed and ha-
itual forms of behavioral control are assumed to overlap to some de-
ree with model-based and model-free reinforcement learning systems
 Dolan and Dayan, 2013 ). Within this framework, learning can be de-
ned as the identification of a value function that selects the most re-
arding options in the current environment. Therefore, the value func-

ion links the previous value of the options available with rewards that
an be expected in the future. This results in a policy that maps differ-
nt environments to action probabilities and therefore determines which
ctions are selected in each state ( Gershman and Uchida, 2019 ). Specif-
cally, a central aspect in both model-based and model-free learning is
he computation of prediction error signals to update the value function.
herefore, previous experiences are used to form predictions, which are
hen updated by comparing the predicted outcome of an option to the
ctual outcome. 

While a model-based policy acquires a cognitive map of the task
tructure (i.e., how different environments are linked to each other) and
ses this to predict the most advantageous course of action, the model-
ree system encodes values by trial and error and uses the reward history
o guide behavior ( Daw et al., 2005 , 2011 ; Gläscher et al., 2010 ). 
uary 2021 
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On the neural level, model-based processing is thought to rely
n posterior inferior parietal as well as lateral prefrontal regions
 Gläscher et al., 2010 ) and, as shown more recently, on hippocam-
al areas ( Pfeiffer and Foster 2013 ; Garvert et al., 2017 ; Miller et al.,
017 ; Stachenfeld et al., 2017 ). Model-free learning, in turn, is as-
umed to be driven by prediction error signals of midbrain dopamine
eurons mapping the difference between the actual and expected re-
ard at a particular state and depends mainly on the ventral striatum
 Bayer and Glimcher, 2005 ; Haruno and Kawato, 2006 ; McClure et al.,
003 ; O’Doherty et al., 2003 ). In terms of the flexible adaption to
hanges in the environment, we identified the medial prefrontal cor-
ex (mPFC) as a potential key player, since it is linked to essential fea-
ures of flexible learning ( Nee et al., 2011 ). In particular, the mPFC
s thought to be implicated in the anticipation of values of currently
vailable actions ( Aarts et al., 2008 ), the representation of possible out-
omes ( Brown, 2009 ), the association between actions and outcomes
 Oliveira et al., 2007 ), error detection processes during contingency
hanges ( Zarr and Brown, 2016 ), and the computation of likely action
utcomes ( Alexander and Brown, 2011 ; Croxson et al., 2009 ). 

The computational conceptualization of reflexive and reflective sys-
ems of behavioral control in terms of model-based and model-free
rocessing provided valuable insights into the mechanisms underlying
ach of these systems as well as their interplay. First behavioral stud-
es suggested that acute stress may affect behavioral flexibility in gen-
ral ( Plessow et al., 2011 ; Schwabe and Wolf, 2011 ) and the contri-
utions of model-based and model-free processes to aversive learning
r learning from negative outcomes in particular ( Park et al., 2017;
aio et al., 2017 ). However, how stress changes the contributions of
odel-based and model-free systems to flexible learning in a highly

olatile environment and, in particular, the neural mechanisms underly-
ng stress-induced alterations in model-based and model-free processing
re largely unknown. 

In the present experiment, we combined computational modeling
nd functional magnetic resonance imaging (fMRI) to elucidate the neu-
ocomputational mechanisms underlying stress-induced deficits in flex-
ble learning. Therefore, healthy participants first underwent a stan-
ardized stress or control procedure before they completed a two-step
arkov decision task in the MRI scanner. This task allows a dissociation

f model-based and model-free contributions to behavior ( Daw et al.,
011 ) and requires two subsequent decisions which can ultimately lead
o a reward. To explicitly probe the flexibility of learning, we used a
odified version of this task that included repeated reversals of reward

ontingencies. Here, flexible learning was expressed as the ability to de-
ect a reversal and adapt the choice behavior accordingly. We assumed
hat task performance would rely on both model-based and model-free
omputations and that stress would reduce their recruitment during
earning. Because previous findings suggested that individuals with low
orking memory capacity were more susceptible to detrimental stress

ffects on model-based learning strategies than participants with high
orking memory capacity ( Otto et al., 2013 ), we further included an n-
ack test to probe participants’ baseline working memory performance.

. Materials and methods 

.1. Participants and experimental design 

Sixty-eight healthy volunteers participated in this experiment. Based
n previous studies from our lab that reported effect sizes of Co-
en’s d from 0.66 to 0.98 for similar research questions ( Schwabe and
olf, 2009 , 2012 ), we expected a medium to large effect of stress on

exible learning of Cohen’s d = 0.7. A power analysis using G 

∗ power
 Faul et al., 2007 ) indicated that using a two-tailed independent t -test
ith alpha = 0.05, a sample of 68 participants is required to detect such
 medium-sized effect with a power of 0.80. All participants were right-
anded, had normal or corrected-to-normal vision and were screened for
ossible MRI contraindications. Individuals with a current medical con-
2 
ition, current medication intake or lifetime history of any neurological
r psychiatric disorders were excluded from participation. Moreover, we
xcluded smokers and women taking hormonal contraceptives as both
an affect the stress response ( Kirschbaum et al., 1999 ; Rohleder and
irschbaum, 2006 ). Participants were asked not to drink coffee or other
affeinated beverages and not to do any exercise on the day of the exper-
ment. In addition, they should not eat or drink anything except water
 h before the appointment. All participants provided written informed
onsent before the beginning of testing and received a moderate mone-
ary compensation. The study protocol was approved by the local ethics
ommittee. Ten participants had to be excluded from the analysis be-
ause of excessive head movement (mean displacement > 5 mm) in the
RI ( n = 4), because they missed more than 30% of the trials ( n = 3)

r because they chose the same action in more than 95% of the trials
 n = 3), thus leaving a final sample of 58 participants (17 men and 12
omen in each of the two groups, age 18–34, mean = 24.6, SD = 3.5,
o age difference between groups, t(57) = 0.73, p = 0.47). Participants
ere pseudorandomly assigned to the stress and control groups, in order

o achieve an identical number of men and women per group. 

.2. Stress induction 

In order to control for the diurnal rhythm of the stress hormone
ortisol, all testing took place in the afternoon and early evening,
ith the time of testing being counterbalanced across groups. Partici-
ants of the stress group underwent the Trier Social Stress Test (TSST;
irschbaum et al., 1993 ), a standardized paradigm in experimental
tress research that is known to activate both the autonomic nervous
ystem and the hypothalamus-pituitary-adrenal axis. In brief, the TSST
imulates a 15-min job interview, including a public speech about the
articipant’s eligibility for a job tailored to his/her interests and a men-
al arithmetic task. During both tasks, participants were videotaped and
valuated by two rather cold, non-reinforcing committee members (1
an, 1 woman), dressed in white lab coats. In the control condition,
articipants spoke about a topic of their choice followed by a simple
rithmetic task (counting forwards in steps of 15), without committee
r video recordings. 

To evaluate the successful stress induction through the TSST,
ubjective and physiological measurements were taken at several
ime points across the experiment (see Fig. 1 ). Baseline was as-
essed 10 min after the start of the appointment, so that the sub-
ects were able to acclimatize to the situation. Directly after the
SST/control manipulation, participants rated the difficulty, stressful-
ess, and unpleasantness of the experimental treatment on a scale
rom 0 ( ”not at all difficult/stressful/unpleasant ”) to 100 ( ”very diffi-
ult/stressful/unpleasant ”). Blood pressure and pulse were measured at
aseline, during the TSST, directly after the TSST and after the fMRI
canning session using a digital blood pressure device (OMRON model
500 (HEM-7321-D); Healthcare Europe BV, Hoofddorp, The Nether-

ands) with a cuff applied around the right upper arm, when subjects
ere standing. Finally, we collected saliva samples using Salivette R ○ col-

ection devices (Sarstedt) at baseline, 18 min after stressor onset (shortly
efore the learning task started), and after each block of the Markov de-
ision task (i.e., 40, 60 and 90 min after the treatment, Fig. 1 ). Saliva
amples were stored at − 18 °C until the end of data collection, when we
nalyzed saliva cortisol concentrations using a luminescence assay (IBL,
ermany). 

.3. Markov decision task 

Twenty minutes after the beginning of the stress/control manipula-
ion, when stress-induced cortisol concentrations were expected to peak,
articipants performed a modified version of a two-step Markov deci-
ion task in the MRI scanner. This task was designed to dissociate be-
ween model-based and model-free learning mechanisms ( Daw et al.,
011 ). Each trial consisted of two successive stages, in each of which
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Fig. 1. Experimental procedure. Stress was induced by the Trier Social Stress Test (TSST). Before the stress/control treatment, participants completed several 
questionnaires and performed an n-back task. After the stress/control procedure, participants completed three blocks of a modified Markov decision task (MDT) in 
the MRI scanner. Stress reactivity was assessed by subjective and physiological measures (salivary cortisol, blood pressure, pulse), which were taken at several time 
points across the experiment. 

Fig. 2. Experimental task. Left: State transition structure. Each first stage (state 1) action is predominantly associated with one or the other second stage states (state 
2 and state 3), and leads there in 70% of the time. The different states were marked by differently colored boxes. Reward probabilities in the second stage undergo 
frequent reversals. Middle: Reversal patterns. Reward probabilities of 0.4 and 0.9, and 0.1 and 0.6 stay together in one state. Out of these possible combinations, 
six patterns (two per block) occurred over the course of the experiment per participant. Right: Timeline of events per trial. A first stage choice between two options 
leads to a second stage choice which is probabilistically reinforced with monetary rewards. 
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he participant had to choose between two options ( “left ” or right ”),
epresented by fractal images ( Fig. 2 ). The first stage decision (state 1)
ed to one of two possible states in the second stage (state 2 and state
), requiring another choice between two fractals, which were associ-
ted with different probabilities of receiving a monetary reward. Each
rst stage option was predominantly (70%) associated with one or the
ther second stage state. The choice options in the second stage led to
 monetary reward with a probability of 0.9, 0.6, 0.4 and 0.1, with the
robabilities of 0.9 and 0.4 being paired in one state ( “good state ”), and
.6 and 0.1 in the other ( “bad state ”). A win was depicted by a 10 cents
oin, otherwise “no reward ” appeared on the screen. Upon each state,
articipants had 2 s to submit their choice on an MRI compatible button
ox. If they failed to enter a choice within this time window, the trial
as aborted and the next trial started. Trials were separated by an inter

rial interval of randomized length, between 6 and 10 s ( Fig. 2 , right). 
Whether the transition structure is included in the decision or not

rovides insights into the engaged learning strategy. While the model-
ree learner evaluates actions retrospectively by repeating previously
ewarded choices, the model-based learner also takes the task structure
nto account. Consider a first stage choice that led to a second state
ia a rare transition, followed by a second state choice that led to a
eward. A purely model-free agent would repeat the action because it
as rewarded. A purely model-based learner, however, would switch to

he other first stage option because it takes into account that the pre-
ious first stage action only leads to the rewarded second stage state
ia a rare transition. Thus, first stage decisions provide the opportunity
o determine the extent to which model-based vs. model-free computa-
ions contribute to decisions. In order to explicitly test the flexibility of
earning, we modified the original task by introducing repeated rever-
als of reward contingencies ( Fig. 2 ), requiring the flexible adaptation
f behavior. 
3 
Participants performed 202 trials, distributed over three blocks (70 /
6 / 66 trials) and separated by breaks. In order to explicitly test the flex-
bility of learning, defined as adaptation to a changing environment, we
odified the original task by introducing repeated reversals of reward

ontingencies. Specifically, the reward probabilities associated with sec-
nd stage actions were reversed twice per block, fixed at trial numbers
7, 49, 93, 115, 159 and 181. To ensure that reversals are detectable
espite the probabilistic reward structure, the reversals only take place
ithin one of the two second stage states. Fig. 2 (middle) shows all
ossible reversal combinations. Note that the three blocks were sepa-
ated by a short break in which the subjects were briefly moved out
f the scanner to collect saliva samples. The experimenter then placed
he Salivette in the participant’s mouth using sterile plastic tweezers,
aralleled by the instruction to move as little as possible. We applied
he same criteria for the movement parameters between the blocks as
uring the task, i.e. excluding participants with a mean displacement >
 mm. To make sure that participants did not continue to apply their
reviously learned contingencies, each block began with a new stimu-
us allocation. That is, the same six fractals were randomly assigned to
he three states. Likewise, the background colors of the states were reas-
igned. The second stage reward probabilities were randomly attached
o the new second stage stimuli. The assignment of colors and stimuli to
he states was counterbalanced across participants. The stimulus pairs
ithin the states stayed the same within one block, and so did the back-
round colors of the states and the transitions between first and second
tage. The location of the two options in one state was randomized from
rial to trial to ensure that the participants learned stimulus – state and
timulus – reward contingencies rather than the stimulus position. 

Participants were instructed that they had to make two decisions
n a row in each trial, with the second decision possibly leading to a
eward and that the aim of the task was to gain as many rewards as
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ossible. They were told that the first decision was not directly asso-
iated with the reward, but that it leads to one of two possible states,
n which they again have the choice between two pictures. They were
lso instructed that each first stage option was primarily associated with
ne or the other state in the second stage, but not with which one. Fur-
her, the instructions stated that within the two second stage states, each
icture leads with a certain probability to a reward and in both states
here is a slightly better and a slightly less favorable option and that
hey should find the best option. Most importantly, participants were
nformed that this option would change several times throughout the
xperiment and that they should detect the changes and adapt their be-
avior accordingly. Lastly, they learned that none of the images would
ead to a reward in all trials, so that it is possible that they do not get a
eward for an answer that has been correct many times before - but that
his does not necessarily mean that a reversal took place. The exact task
nstructions that participants received are provided in the supplemental
aterial. 

Before the TSST or control manipulation, participants performed a
rief training session for the learning task (out of the MRI scanner). The
raining consisted of three parts with 10 trials each, introducing the task
teratively. In each phase, the trial structure was the same as in the ex-
erimental task. In the first part, the participants should find out which
mage would lead to a reward with one of the four images being re-
arded while the other three were not. The second part was identical,

xcept that the rewarded picture changed at some point. The partici-
ants were informed about the reversal and were instructed to adapt
heir behavior. The third phase was identical to the experimental task.

e used the same stimuli and transition structure as in the experiment,
he image position and colors of the states were randomized. All three
hases had a fixed number of trials, no learning criterion was applied. 

.4. Working memory assessment 

Because previous research suggested that the influence of stress on
he control of learning may be moderated by the individual working
emory capacity ( Otto et al., 2013 ), we measured working memory us-

ng an n-back task ( Kirchner, 1958 ) before participants underwent the
tress or control manipulation. Participants were presented a random se-
uence of one-digit numbers from ‘‘0’’ to ‘‘9’’ and asked to indicate via
utton press (‘‘yes’’ or ‘‘no’’) whether the currently presented number
as the same as the one presented n-trials before. Participants received
0 stimulus blocks in total (2 practice blocks with feedback and 8 ex-
erimental blocks without feedback), in which working memory load
aried by alternately using a 2-back and a 3-back condition. Each block
onsisted of 24 stimulus trials. Stimuli were displayed for 500 ms and
esponses were recorded within 1500 ms, followed by 2000 ms fixation
ross. 

.5. Behavioral data analyses 

To test whether the TSST successfully induced stress, data on sub-
ective ratings, vital signs, and salivary cortisol were analyzed using
ixed-design ANOVAs with the between-subjects factor treatment and

he within-subjects factor time after stress/control manipulation onset.
-tests were used to investigate post-hoc group differences in these mea-
ures. Learning performance was quantified by the proportion of first
tage choices for the option that led predominantly, with a probability
f 0.7, to the second stage state with the overall higher probability to
btain a reward. Likewise, the proportion of choices for the option with
he higher reward probability (either 0.9 or 0.6) in the second stage re-
ected successful learning. We further computed the sensitivity to detect
hanging contingencies as a difference index between the mean number
f advantageous choices in the four trials before a reversal relative to
he four trials after a reversal. We chose this number of trial before
nd after a reversal to ensure that the participants had enough trials to
earn the contingencies and to specifically capture the reversal related
4 
ehavior. The results remained the same if we used, for instance, 5 trials
efore/after a reversal instead. In order to identify the model-based and
odel-free contributions to behavior and whether these contributions
iffered between the stress and control groups, we used a mixed design
NOVA with the between-subjects factor treatment (stress vs. control
anipulation) and the within-subject factors reward (rewarded vs. not

ewarded) and transition (common vs. rare). Further, we performed a
ixed-effects logistic regression to explain the first stage choice on each

rial. First stage choice was coded as stay vs. switch and was explained
s a function of previous trial’s outcome (rewarded or not rewarded) and
revious trial’s transition type (common or rare). Within-subject factors
the intercept, main effects of reward and transition, and their interac-
ion) were taken as random effects across subjects, and estimates and
tatistics reported at the population level. The experimental treatment
stress vs. control) was taken as a fixed effect. 

We also performed exploratory analyses to test whether anxiety,
epression, chronic stress or working memory capacity influence the
usceptibility to stress effects on flexible learning. We tested whether
hese measures correlated with the sensitivity index or the model pa-
ameters. Additionally, we subdivided the stress group and the con-
rol group based on a median split on these measures, and analyzed
hether individuals with particular high or low scores differed in their
ehavior around the reversals by using a mixed design ANOVA with the
etween-subjects factors treatment (stress vs. control manipulation) and
evel (high vs. low) and the within-subject factor time (pre reversal vs.
ost reversal). All analyses were performed in R ( R Core Team, 2019 ).
reenhouse-Geisser correction was applied when sphericity was vio-

ated. Logistic regressions were conducted as mixed-effects models and
ere performed using the lme4 package ( Pinheiro and Bates, 2000 ). 

.6. Computational modeling 

We used reinforcement learning models to dissociate model-free
nd model-based contributions to subject’s trial by trial choices. We fit
hoice behavior to a dual-system reinforcement learning model which
ncludes both model-free and model based learning strategies, assum-
ng that choices derive from a weighted combination of both model-free
nd model-based value computations ( Daw et al., 2011 ; Gläscher et al.,
010 ). Therefore, the algorithms learn a value function 𝑄 ( s,a ) for each
f the stimulus-action pairs in the two stages (three states, first stage:
 A , second stage: s B and s C ; each with two actions). On trial t , the first
tage state (always s A ) is followed by the first stage action which leads
o the second stage state ( s B or s C ). The second stage action 𝑎 2 is proba-
ilistically connected to a reward r 2,t . At each stage i of each trial t , the
alue for the visited state-action pair 𝑄 ( s,a ) was updated according to
oth a model-free and a model-based algorithm. 

Model-free values were computed with a SARSA ( 𝜆) temporal dif-
erence algorithm. As stated before, model-free choices derive from re-
eating previously rewarded actions. In the first trial, each state-action
air ( s, a ) at stage i and trial t has a 𝑄 -value of zero. In each following
rial 𝑡 + 1 the value for the visited state-action pair 𝑄 𝑀𝐹 ( 𝑠 𝑖, 𝑡 +1 , 𝑎 𝑖, 𝑡 +1 )
s updated based on whether the particular pairing was rewarded in the
revious trial t . Therefore, the general form of the model-free value up-
ate for chosen stimulus-action pair is: 

 𝑀𝐹 

(
𝑠 𝑖, 𝑡 +1 , 𝑎 𝑖, 𝑡 +1 

)
= 𝑄 𝑀𝐹 

(
𝑠 𝑖, 𝑡 , 𝑎 𝑖, 𝑡 

)
+ 𝛼𝑖 𝛿𝑖, 𝑡 (1)

here 

𝑖, 𝑡 = 𝑟 𝑖, 𝑡 + 𝑄 𝑀𝐹 

(
𝑠 𝑖 +1 , 𝑡 , 𝑎 𝑖 +1 , 𝑡 

)
− 𝑄 𝑀𝐹 

(
𝑠 𝑖, 𝑡 , 𝑎 𝑖, 𝑡 

)
(2)

𝛿 refers to the reward prediction error and 𝛼 indicates the learning
ates. However, this general form of value update and prediction error
s narrowed down in the different stages of the task, which is explained
ext. 

The prediction error is different for the two stages of the task. Since
 1 ,𝑡 is always zero, the prediction error at the first stage is driven by the
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c

𝑅𝑃 𝐸 𝑠 , 𝑎 = 𝑟 − 𝑄 𝑠 , 𝑎 (16) 
alue of the selected second stage action: 

1 , 𝑡 = 𝑄 𝑀𝐹 

(
𝑠 2 , 𝑡 , 𝑎 2 , 𝑡 

)
− 𝑄 𝑀𝐹 

(
𝑠 1 , 𝑡 , 𝑎 1 , 𝑡 

)
(3)

This prediction error 𝛿1 , 𝑡 is used to update
 𝑀𝐹 ( 𝑠 1 , 𝑡 , 𝑎 1 , 𝑡 ) immediately after the first choice has been made:

 𝑀𝐹 

(
𝑠 1 , 𝑡 +1 , 𝑎 1 , 𝑡 +1 

)
= 𝑄 𝑀𝐹 

(
𝑠 1 , 𝑡 , 𝑎 1 , 𝑡 

)
+ 𝛼1 𝛿1 , 𝑡 (4)

Since there is no third stage, the second stage prediction error is
riven by the reward 𝑟 2 ,𝑡 : 

2 , 𝑡 = 𝑟 2 ,𝑡 − 𝑄 𝑀𝐹 

(
𝑠 2 , 𝑡 , 𝑎 2 , 𝑡 

)
(5)

This prediction error 𝛿2 , 𝑡 at the second stage is used to update the
rst and second stage model-free values, once the reward information
f the outcome has become available. 

 𝑀𝐹 

(
𝑠 2 , 𝑡 +1 , 𝑎 2 , 𝑡 +1 

)
= 𝑄 𝑀𝐹 

(
𝑠 2 , 𝑡 , 𝑎 2 , 𝑡 

)
+ 𝛼2 𝛿2 , 𝑡 (6)

 𝑀𝐹 

(
𝑠 1 , 𝑡 +1 , 𝑎 1 , 𝑡 +1 

)
= 𝑄 𝑀𝐹 

(
𝑠 1 , 𝑡 , 𝑎 1 , 𝑡 

)
+ 𝛼1 𝜆𝛿2 , 𝑡 (7)

Note that this update uses the already updated 𝑄 𝑀𝐹 ( 𝑠 1 , 𝑡 , 𝑎 1 , 𝑡 ) from
bove, thus constituting a second update of first stage values. 

The learning rates 𝑎 1 and 𝑎 2 , estimated for both stages, control how
uch the 𝑄 -value is updated by the prediction error and therefore indi-

ate to what extent newly acquired information overwrites old informa-
ion. The learning rates are constrained between 0 and 1 with an 𝛼 pa-
ameter = 0 indicating no learning and 𝛼 = 1 indicating the agent consid-
rs only the most recent information. Further, at the end of each trial the
ligibility parameter 𝜆 (range 0 to 1) modulates 𝑎 1 in the second update
n light of the reward information that has become available at the end
f the trial . Higher values of lambda indicate more reliance to further
ack states and actions. In other words, 𝜆 performs a down-weighting
f the first stage action based on the temporal distance from the current
rial. Both the first- and second stage 𝑄 𝑀𝐹 values are updated at the
econd stage, with the first stage values receiving the prediction error
alues that were decayed by 𝜆 (see supplement in Daw et al. (2011) for
etails). 

The model-based agent learns cumulative state-action values with
 FORWARD algorithm. As described before, the model-based learner’s
ecisions are not only determined by the reward, but also include the
ath that lead to the second stage’s state, i.e. whether the transition was
ommon or rare. Specifically, the algorithm computes a transition func-
ion for the first stage state-action pairs and then combines it with the
econd stage’s reward predictions. Referring to our experimental task,
his means that a model-based learner would first consider which first
tage action leads to which second stage state, and then learn the reward
alues for the second stage actions. At the first stage, the transition func-
ion T contains the information of which first stage action maps to which
econd stage state. Note that in our model, the transition structure with
ommon and rare transitions leading to 70 and 30 percent in one of the
wo states in the second stage was predetermined and not learned by
he model (see below for a test of this supposition). At the second stage,
 𝑀𝐵 values are calculated similar to the 𝑄 𝑀𝐹 values: comparing the ac-

ual outcome of the visited state with the predicted outcome, weighted
y the learning rate 𝛼 (to which extent will the old information be over-
ritten by the new information) and the eligibility parameter 𝜆 (how far

s the distance from the current trial). Model-based value expectation de-
ends on the specification of first stage 𝑄 -values in terms of Bellman’s
quation ( Sutton and Barto, 1998 ) using the transition structure P : 

 𝑀𝐵 

(
s 𝐴,𝑡 +1 , 𝑎 1 ,𝑡 +1 

)
= P( 𝑠 𝐵 |s 𝐴, 𝑡 ) 𝑚𝑎𝑥 𝑄 𝑀𝐹 

(
𝑠 𝐵,𝑡 , 𝑎 2 ,𝑡 

)

+ 𝑃 
(
𝑠 𝐶 s 𝐴 , 𝑎 1 ,𝑡 

)
𝑚𝑎𝑥 𝑄 𝑀𝐹 

(
𝑠 𝐶,𝑡 , 𝑎 2 ,𝑡 

)
(8) 

nd is recomputed at each trial, based on the current estimates of the
ransition probabilities and second stage reward values. Because model-
ased and model-free algorithms coincide at the second stage, we set
 = 𝑄 at this level. 
𝑀𝐵 𝑀𝐹 

5 
Finally, we assume that behavior derives from a weighted combi-
ation of both model-based and model-free value computations. There-
ore, we define net action values at the first stage as the weighted sum
f model-based and model-free values 

 𝑛𝑒𝑡 

(
s 𝐴,𝑡 +1 , 𝑎 1 ,𝑡 +1 

)
= 𝑤 𝑄 𝑀𝐵 

(
s 𝐴,𝑡 , 𝑎 1 ,𝑡 

)
+ ( 1 − 𝑤 ) 𝑄 𝑀𝐹 

(
s 𝐴,𝑡 , 𝑎 1 ,𝑡 

)
, (9)

here 𝑤 is a weighting parameter. This parameter is assumed to be
onstant across trials, with 𝑤 = 0 reflecting purely model-free value
omputing and 𝑤 = 1 purely model-based reinforcement learning. The
robability of a choice is composed by a softmax for 𝑄 𝑛𝑒𝑡 at the first
tage: 

( 𝑎 1 , 𝑡 = 𝑎 |s 𝐴, 𝑡 ) = 

exp 
(
𝛽1 
[
𝑄 𝑛𝑒𝑡 

(
𝑠 1 , 𝑡 , 𝑎 

)
+ 𝑝 ∗ 𝑟𝑒𝑝 ( 𝑎 ) 

])
∑

𝑎 ′ exp 
(
𝛽1 
[
𝑄 𝑛𝑒𝑡 

(
𝑠 1 , 𝑡 , 𝑎 

′
)
+ 𝑝 ∗ 𝑟𝑒𝑝 ( 𝑎 ′) 

]) (10)

here the inverse temperature parameters 𝛽1 and 𝛽2 indicate the ran-
omness of the choice by specifying the extent to which the values are
pdated based on the learned information. Temperature parameters are
et from 0 to ∞ with lower values indicating more randomness in choice
ehavior. The stay parameter 𝑝 , ranging from 0 to 1, captures first-order
erseveration in the first stage, together with the indicator function rep
hat is 1 when the current first stage action is the same as in the previous
rial. The stay parameter was omitted at the second stage and hence the
oftmax is defined as: 

( 𝑎 2 , 𝑡 = 𝑎 |s 2 , 𝑡 ) = 

exp 
(
𝛽2 
[
𝑄 𝑛𝑒𝑡 

(
𝑠 2 , 𝑡 , 𝑎 

)])
∑

𝑎 ′ exp 
(
𝛽2 
[
𝑄 𝑛𝑒𝑡 

(
𝑠 2 , 𝑡 , 𝑎 

′
)]) (11)

In total, the algorithm contains 7 free parameters ( 𝑎 1 , 𝑎 2 , 𝛽1 , 𝛽2 , 𝜆,
 , w) which were fit separately for each participant using the prob-
bilistic programming language Stan through its MATLAB interface
 Carpenter et al., 2017 ). 

With the help of the model-parameters determined for each subject
e were able to draw conclusions about the learning strategies used.
e conducted group comparisons for each parameter to identify general

ifferences in behavioral tendencies between the stress group and the
ontrol group. 

To determine different learning strategies in the neuroimaging data
e calculated three different prediction errors. Therefore, we extracted

ach participant’s best fitting parameters and reran the task, resulting
n model predictions on a trial basis. In addition to the actual predic-
ion with the individual 𝑤 -parameter, we also created model-based or
odel-free predictions by again inserting the parameters in the task,

ut this time not the fitted 𝑤 -parameter, but with 𝑤 = 0 and 𝑤 = 1, re-
ecting pure model-free and pure model-based behavior, respectively.
hus, we obtain three predicted datasets for each subject. This allows
s to distinguish between model-based and model-free prediction errors
or the value update at stage 1. 

For 𝑄 𝑀𝐵 , we set 𝑤 = 1: 

 𝑀𝐵 

(
s 𝑖,𝑡 +1 , 𝑎 𝑖,𝑡 +1 

)
= 1 ∗ 𝑄 𝑀𝐵 

(
s 𝑖,𝑡 , 𝑎 𝑖,𝑡 

)
+ ( 1 − 1 ) 𝑄 𝑀𝐹 

(
s 𝑖, 𝑡 , 𝑎 𝑖,𝑡 

)
(12)

Likewise, for 𝑄 𝑀𝐹 , we determine 𝑤 = 0: 

 𝑀𝐹 

(
s 𝑖,𝑡 +1 , 𝑎 𝑖,𝑡 +1 

)
= 0 ∗ 𝑄 𝑀𝐵 

(
s 𝑖,𝑡 , 𝑎 𝑖,𝑡 

)
+ ( 1 − 0 ) 𝑄 𝑀𝐹 

(
s 𝑖,𝑡 , 𝑎 𝑖,𝑡 

)
(13)

These predicted 𝑄 -values are used to derive prediction errors (see
q. (3) ): 

 𝐸 𝑀𝐵 

(
𝑠 1 ,𝑡 , 𝑎 1 , 𝑡 

)
= 𝑄 𝑀𝐵 

(
s 2 ,𝑡 , 𝑎 2 ,𝑡 

)
− 𝑄 𝑀𝐵 

(
s 1 ,𝑡 , 𝑎 1 ,𝑡 

)
(14)

 𝐸 𝑀𝐹 

(
𝑠 1 ,𝑡 , 𝑎 1 , 𝑡 

)
= 𝑄 𝑀𝐹 

(
s 2 ,𝑡 , 𝑎 2 ,𝑡 

)
− 𝑄 𝑀𝐹 

(
s 1 ,𝑡 , 𝑎 1 ,𝑡 

)
(15)

Finally, we identify the reward prediction error 𝑅𝑃 𝐸 which is cal-
ulated when the outcome is presented: 

( ) ( )

2 , 𝑡 2 , 𝑡 2 ,𝑡 𝑛𝑒𝑡 2 , 𝑡 2 , 𝑡 
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Table 1 

Model Comparison using WAIC. 

Model Name 𝛼 𝛽 𝑝 𝑤 𝜆 𝜀 nParams Control Stress 

Full 2 2 1 1 1 0 7 11,191.15 12,056.88 

full + state space 2 2 1 1 1 1 8 11,202.57 12,062.26 

no p 2 2 0 1 1 0 6 11,436.80 12,359.40 

one 𝛼 1 2 1 1 1 0 6 11,214.76 12,072.60 

one 𝛽 2 1 1 1 1 0 6 11,218.68 12,077.35 

no p_one 𝛼 1 2 0 1 1 0 5 11,495.35 12,450.99 

no p_one 𝛽 2 1 0 1 1 0 5 11,542.43 12,433.98 

one 𝛼_one 𝛽 1 1 1 1 1 0 5 11,541.47 12,436.59 

no p_one 𝛼_one 𝛽 1 1 0 1 1 0 4 11,628.99 12,509.57 
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.7. Model validation 

To validate the model fit, we compared our fully parameterized hy-
rid model ( Daw et al., 2011 ; Gläscher et al., 2010 ) to various reduced
ested versions. The model should be as complex as necessary to ade-
uately represent behavior, but only as complex as justified by the data.
e compared our model to several other models that are simplified by

emoving different parameters, e.g. a version without the stay bias ( 𝑝 ), a
ersion with only one learning rate ( 𝛼), a version with only one temper-
ture parameter ( 𝛽), and combinations of these reductions ( Table 1 ). We
lso explicitly tested whether state space learning played a significant
ole in task performance because the participants did not know the tran-
ition probabilities for common and rare transitions at the beginning of
he experiment. We therefore included a mechanism by which a partici-
ant can learn the transition probabilities during task execution, which
e have used in a prior publication ( Gläscher et al., 2010 ). Transition
robabilities are stored in a transition matrix T , which can be learned
sing a state prediction error (see Gläscher et al., 2010 ). Specifically,
ach element of T specifies the probability of the reached second stage
tate 𝑠 2 from the first stage state 𝑠 1 via an action 𝑎 1 ( 𝑇 ( 𝑠 1 ,𝑡 , 𝑎 1 ,𝑡 , 𝑠 2 ,𝑡 ) . In
he state space learning model, all transition probabilities are initially
et to 0.5 reflecting no prior knowledge about the transitions by the par-
icipants. Upon every trial all possible transitions following action 𝑎 1 ,𝑡 
re updated according to the following learning rules: 

 

(
𝑠 1 ,𝑡 +1 , 𝑎 1 ,𝑡 +1 , 𝑠 2 ,𝑡 +1 

)
= 𝑇 

(
𝑠 1 ,𝑡 , 𝑎 1 ,𝑡 , 𝑠 2 ,𝑡 

)
+ 𝜀 (1 − 𝑇 

(
𝑠 1 ,𝑡 , 𝑎 1 ,𝑡 , 𝑠 2 ,𝑡 

)
(17)

 

(
𝑠 1 ,𝑡 +1 , 𝑎 1 ,𝑡 +1 , ¬𝑠 2 ,𝑡 +1 

)
= 𝑇 

(
𝑠 1 ,𝑡 , 𝑎 1 ,𝑡 , ¬𝑠 2 ,𝑡 

)
− 𝜀 𝑇 

(
𝑠 1 ,𝑡 , 𝑎 1 ,𝑡 , ¬𝑠 2 ,𝑡 

)
(18)

here 𝑇 ( 𝑠 1 ,𝑡 , 𝑎 1 , 𝑠 2 ,𝑡 ) is the probability of transitions from the first stage
tate 𝑠 1 ,𝑡 to the second stage state 𝑠 2 ,𝑡 using action 𝑎 1 ,𝑡 on trial t ,
 ( 𝑠 1 ,𝑡 , 𝑎 1 , ¬𝑠 2 ,𝑡 ) is the unrealized transition to the other possible second
tage state, and 𝜀 is the learning rate for state space learning, modeled
ith an initial uniform Beta(1,1) prior. We think that updating both the

ealized and the unrealized state transition following the same action
 1 ,𝑡 is a reasonable approach given that participants are probably aware
at least in the latter parts of the experiment) that action 𝑎 1 ,𝑡 could have
lso resulted in a different transition. All other components of the state
pace learning model are identical to the full learning model, includ-
ng the linear weighting of model-free and model-based learning (see
quations above). Model comparisons were performed by calculating
he widely applicable information criterion (WAIC; Watanabe, 2010 )
hich indicates prediction performance and assesses the quality of a
odel, relative to the quality of other candidate models by estimating

he posterior likelihood, followed by a correction for the effective num-
er of parameters to adjust for overfitting. This approach is often used
or comparing models estimated using Markov Chain Monte Carlo sam-
ling as in our case and confirmed that the full model outperformed all
ompeting versions ( Table 1 ). 

A fully parameterized hybrid model without a state space learning
omponent fitted subjects’ choices best in a model comparison that con-
iders differences in model complexity. Model performance is indicated
y the widely applicable information criterion (WAIC), presented sepa-
ately for the stress group and the control group. Lower values represent
6 
 better fit. The full model contains two learning rates ( 𝛼), two temper-
ture parameters ( 𝛽), the stay bias ( 𝑝 ), the weighting parameter ( 𝑤 ) and
he eligibility parameter ( 𝜆) and was compared to several other models
hat are simplified by removing different parameters, respectively, or
ncluded the state space learning rate 𝜀 . 

.8. MRI data acquisition and analysis 

Functional imaging was conducted using a 3 T Siemens (Erlan-
en, Germany) MAGNETOM Prisma scanner, equipped with a 64-
hannel head coil, to acquire gradient echo T2 ∗ -weighted echo-planar-
mages (EPI) with BOLD contrast. For each of the three functional
uns, we collected about 600 vol with the following parameters: 60
lices, slice thickness = 2 mm, flip angle 60%, FOV 224 × 224, repe-
ition time (TR) = 2000 ms, echo time (TE) = 30 ms, voxel size 2.0 mm
sotropic. Slice orientation was tilted − 30° from the line connecting
he anterior and posterior commissure to alleviate signal drop out
n the orbitofrontal cortex ( Deichmann et al., 2003 ). We additionally
cquired a high-resolution T1-weighted anatomical image (TR = 2.5 s,
E = 2.12 ms, 256 slices, voxel size = 0.8 × 0.8 × 0.9 mm). Prepro-
essing of functional images was performed with MATLAB and SPM12
 http://www.fil.ion.ucl.ac.uk/spm/ ). The first five functional images
ere discarded from the analysis to allow for T1 saturation effects. The

emaining functional images were first spatially realigned, then coreg-
stered to the structural image, followed by a normalization to the MNI
pace. The images were additionally spatially smoothed using a 4 mm
ull-width half-maximum Gaussian kernel. 

Subject-specific design matrices were defined using general linear
odeling (GLM) as implemented in SPM12. We entered three regres-

ors coding the average BOLD response at each of the three states (two
hoice states, one outcome state). The model-derived prediction error
ignals (model-free prediction error 𝑃 𝐸 𝑀𝐹 and model-based prediction
rror 𝑃 𝐸 𝑀𝐵 ) were entered as parametric modulators, modeled at the
nset of the second stage. We chose this time point because we as-
ume that the relevant learning computations are integrated to a value
pdate when the second decision is required. A parametric regressor
oding the received outcomes (reward = + 1, no reward = 0) was mod-
led at the time of the outcome. Model-derived reward prediction errors
RPE) were modeled as parametric modulators on the outcome onsets,
ecause here we are specifically interested in the process of reward-
elated value updating. Moreover, we subdivided behavioral data into
advantageous-choice-trials ” and “disadvantageous-choice-trials ”, sep-
rately for the first and the second stage and entered their onsets into
ur GLM. For the second-level models, the contrasts of interest “model-
ased prediction error ”, “model-free prediction error ”, “reward predic-
ion error ”, “reward ”, “advantageous choice stage 1 ” and “advantageous
hoice stage 2 ” were defined. These difference contrasts were taken to
 second-level group two-sample t -test, allowing a direct comparison
etween the stress and control group. 

Based on our a-priori hypotheses, analyses were restricted to brain
reas that have previously been implicated in model-based and model-
ree reinforcement learning ( Daw et al., 2011 ; Gläscher et al., 2010 ;
ee et al., 2014 ). We used the following anatomical masks from the
arvard-Oxford atlas: putamen, caudate, and hippocampus. In order

http://www.fil.ion.ucl.ac.uk/spm/
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o test for potential differential involvement of anterior and posterior
egions of the hippocampus in model-based and model-free learning
nder stress, we divided a hippocampal mask along the y-axis into
hree parts with approximately equal lengths, using the WFU pick-atlas
 Lancaster et al., 2000 ; Maldjian et al., 2003 ): posterior hippocampus
rom Y = − 40 to − 30, medial hippocampus from Y = − 29 to − 19, and
nterior hippocampus from Y = − 18 to − 4. For a more detailed descrip-
ion see Collin et al. (2015) and Dandolo and Schwabe (2018) . More-
ver, we used anatomical masks for lateral orbitofrontal cortex from the
ontreal atlas and combined the AAL atlas-masks for frontal superior
edial, frontal middle and frontal superior to a medial prefrontal cortex
ask, as implemented in the WFU PickAtlas Tool ( Maldjian et al., 2003 ).
0 mm spheres centered on the peak voxel of bilateral ventral striatum
left peak: − 9 2 8, right peak: 9 5 − 8), bilateral insulae (left peak: − 30
0 − 2, right peak: 33 29 7) and ilPFC (left peak: − 54 38 3, right peak:
8 35 − 2) were created, because they were previously associated with
odel-free and model-based learning strategies ( Lee et al., 2014 ). We

pplied a small volume correction (svc) for the areas of interest with an
nitial uncorrected threshold of 0.05 on whole-brain-level. The svc was
pplied on voxel level. Voxels were regarded as significant, when falling
elow a corrected voxel threshold of 0.05 (family wise error (FWE) cor-
ected) adjusted for the small volume. 

. Control variables 

To control for personality traits and behavioral tendencies that may
ffect flexible learning and decision-making in general, participants
lled out several questionnaires at the beginning of the experiment. In
articular, participants completed German versions of the State-Trait
nxiety Inventory (STAI; Spielberger et al. 1970 ), the Trier Inventory of
hronic Stress (TICS; Schulz & Schlotz 1999 ) and the Beck Depression

nventory (BDI; Beck et al. 1961 ). 

. Results 

.1. Successful stress induction 

Participants first underwent the TSST, a standardized stress proto-
ol consisting of a mock job interview, or a non-stressful control pro-
edure. Subjective and physiological measurements confirmed the suc-
essful stress induction through the TSST ( Fig. 3 A-E). The TSST was
xperienced as significantly more difficult (t(56) = 5.73, p = 4.12e − 07 ,
 = 1.51), unpleasant (t(56) = 6.70, p = 1.09 e − 08 , d = 1.76), and stress-
ul (t(56) = 5.55, p = 8.14e − 07 , d = 1.46) than the control manipulation.
oreover, the TSST, but not the control procedure, led to increased sys-

olic blood pressure (treatment × time: F(3168) = 16.67, p = 1.59e − 09 ;
2 

ges = 0.059), diastolic blood pressure (F(2.64, 148.01) = 15.67,
 = 3.29e − 08 (Greenhouse-Geisser corrected), 𝜂2 

ges = 0.080), and pulse
F(2.41, 134.77) = 14.39, p = 3.83e − 07 (Greenhouse-Geisser corrected),
2 

ges = 0.048), indicating significant autonomic activation in response
o the TSST. Finally, the TSST, but not the control manipulation, in-
uced a pronounced increase in salivary cortisol (treatment × time:
(2.43, 136.31) = 10.70, p = 3.83e − 07 (Greenhouse-Geisser corrected),
2 

ges = 0.0475). While groups did not differ in cortisol concentrations
efore the TSST (t(56) = − 0.35, p = 0.73, d = − 0.09), cortisol concen-
rations were significantly higher in the stress group than in the con-
rol group at all time points of measurement after the manipulation
all p ≤ 0.05). Peak cortisol levels were reached ~18 min after stres-
or onset, shortly before the Markov decision task in the MRI began,
nd cortisol levels remained significantly elevated throughout the task.

.2. Stress reduces the behavioral sensitivity to reversals of reward 

ontingencies 

In order to examine how stress changes the flexibility of learning,
articipants completed a modified Markov decision task in the MRI scan-
7 
er about 20 min after the onset of the stress or control manipulation.
his task was designed to dissociate model-free and model-based learn-

ng ( Daw et al., 2011 ; Gläscher et al., 2010 ) and involved two subse-
uent choices, each between two fractal stimuli ( Fig. 2 ). The first stage
ecision led to a second stage, requiring another choice between two
ptions which were associated with different probabilities of monetary
eward. Each of the first stage options was predominantly associated
ith one or the other state in the second stage. Whether or not the tran-

ition between the first and the second stage is considered in the decision
llows conclusions to be drawn about the underlying learning strategy.
hile a purely model-free learning strategy only accounts for whether

he previous action led to a reward in the second stage, a model-based
earner would also include the path that led to the result in the subse-
uent decision. Learning performance was quantified by the proportion
f first stage choices for the stimulus that led predominantly to the sec-
nd stage state with the overall higher probability to obtain a reward
0.9 | 0.4 vs. 0.6 | 0.1). Likewise, successful learning in the second stage
as associated with the proportion of choices for the option with the
igher reward probability (either 0.9 or 0.6). 

The stress and control groups did not differ in the overall propor-
ion of advantageous choices, neither in the first stage (t(56) = 1.123,
 = 0.266, d = 0.295), nor in the second stage (t(56) = − 0.239, p = 0.81,
 = − 0.062). This pattern of results is generally in line with previous
ndings suggesting that the stress-induced alteration in the nature of

earning becomes apparent only when the environment changes and
he flexibility of behavior is probed ( Kim et al., 2001 ; Schwabe and

olf, 2009 ; Schwabe et al., 2010 ). The proportion of advantageous
rst stage choices did not differ between blocks (main effect block: F(1,
6) = 0.04), p = 0.84, 𝜂2 

ges = 0.0003; treatment × block: F(1, 56) = 0.03,
 = 0.87, 𝜂2 

ges = 0.0002), neither did the proportion of advantageous
econd stage choices (main effect block: F(1, 56) = 1.72), p = 0.20,
2 

ges = 0.10; treatment × block: F(1, 56) = 1.23, p = 0.27, 𝜂2 
ges = 0.007).

In a next step, we analyzed participants’ behavioral response to the
eversal by comparing the proportion of advantageous choices in the
our trials before a reversal relative to the four trials after a rever-
al between the stress and control groups ( Fig. 4 ). For the first stage
hoices, the proportion of advantageous choices was – as expected –
verall significantly lower after a reversal than before (main effect of
ime; F(3168) = 25.018, p = 5.95e − 06 , 𝜂2 

ges = 0.23), post-hoc t -test pre
s. post: t(57) = 4.87, p = 9.21 e − 06 , d = 0.64). Interestingly, the
hange in first stage choices from pre- to post-reversal differed signifi-
antly between groups (treatment × time: F(1, 56) = 4.104, p = 0.048,
2 

ges = 0.047). Post-hoc t-tests revealed that the proportion of advan-
ageous choices in the pre-reversal trials was significantly lower in
he stress group than in the control group (t(56) = − 2.25, p = 0.03,
 = − 0.59), while groups did not significantly differ in the proportion of
dvantageous choices after a reversal (t(56) = 1.19, p = 0.24, d = 0.31).
o verify that the predictions of our model matched the actual data
round the reversals, we performed posterior predictive checks. There-
ore, we generated 50 simulations for each participant, in which we en-
ered each individual set of optimized parameters into our version of the
arkov decision task. Averaging over these simulations we obtained the

osterior predictive peri ‑reversal time course of advantageous choices.
his showed a pattern very similar to the actual data ( Fig. 4 , right panel).

To test whether the differential influence of reversals on choice be-
avior in the stress group relative to the control group cannot be ex-
lained by a general learning impairment in the stress group, we tested
hether the proportion of advantageous choice in the stress group dif-

ered from chance level. The proportion of advantageous choices in
he first stage was significantly different from chance (i.e. 50 percent;
(28) = 3.03, p = 0.005), indicating that the stress group had learned the
ontingencies before a reversal took place. Moreover, the proportion of
dvantageous choices in the stress group differed in the four trials be-
ore a reversal versus four trials after a reversal (t(28) = 2.14, p = 0.04,
 = 0.40), indicating that the reversal did affect the behavior of stressed
articipants, but to a lesser extent than in controls. 
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Fig. 3. Successful stress induction. (A) Participants in the stress condition rated the treatment as significantly more difficult, unpleasant, and stressful than participants 
in the control condition. The exposure to the stressor led further to significant increases in (B) salivary cortisol levels, (C) systolic blood pressure, and (D) diastolic 
blood pressure. (E) Heart rate measures were significantly lower in the stress group than in the control group at baseline (t(56) = − 2.28, p = 0.03). Measures increased 
significantly after stress, relative to baseline (t(28) = 3.34, p = 0.002), but decreased at control treatment (t(28) = − 4.37, p = 0.0002); error bars represent standard 
errors of the mean, ∗ ∗ p < 0.01, ∗ ∗ ∗ p < 0.001 for the comparison between the stress group and the control group. 
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The observed group differences in the first stage are particularly in-
riguing as the first stage choice indicates the integration of the task
tructure into the decision. A large proportion of decisions that lead
o the better second state suggest an understanding of the state space
nd the associated transitions (model-based learning) - regardless of the
eward obtained in the end. We further tested whether participants’ be-
avior around the reversal, expressed as mean number of advantageous
rst stage choices in the four trials before a reversal minus the four tri-
ls after a reversal, differed between blocks. This analysis showed that
either the stress group (F(1, 28) = 0.04, p = 0.84, 𝜂2 

ges = 0.002), nor
he control group (F(1, 28) = 1.89, p = 0.18, 𝜂2 

ges = 0.06) changed in
heir sensitivity to reversals across the three blocks of the experiment. 

The proportion of choices for the option with the higher reward prob-
bility in the second stage was also significantly lower after a reversal
han before (main effect of time; F(1, 56) = 89.948, p = 3.007e − 13 ,
2 

ges = 0.424), but did not differ between groups (treatment × time:
(1, 56) = 0.099, p = 0.755, 𝜂2 

ges = 0.0008). Accordingly, the change
n the proportion of advantageous second stage choices from before to
fter the reversal did not differ between the stress and control groups
t(56) = − 0.289, p = 0.773, d = − 0.076; Fig. 4 B). 

.3. Model-based and model-free contributions to behavior 

In order to capture model-free and model-based contributions to
hoice behavior, we conducted a logistic regression analysis. The pre-
ious trial’s transition type and outcome were used to explain whether
articipants chose the same action again or whether they switched to
he other option. This analysis allows a dissociation of model-free and
odel-based contributions because both learning strategies make qual-

tatively distinct predictions about how the previous trial’s character-
stics influence the first stage choice in the following trial. Fig. 5 (left)
hows the theory-based choice behavior of purely model-free and model-
8 
ased learners. A pure model-free strategy predicts that a rewarded ac-
ion will be repeated, regardless of the transition type (main effect of
eward). A model-based agent, on the other hand, uses its knowledge
f the task structure and therefore predicts an interaction between tran-
ition and reward. The data predicted by our model suggest a mixture
f model-free and model-based learning strategies, without differences
etween the stress group and the control group ( Fig. 5 , middle). 

The logistic regression analysis confirmed the basic signature of
odel-free reinforcement learning to behavior, indicated by an in-

reased probability to stay when the previous trial was rewarded
 z = 5.715, p = 1.10e − 08, 𝛽 = 1.295), as well as the contribution of
odel-based strategies as indicated by a reward × transition interaction
ith an additional increase in stay probabilities when a reward was ob-

ained after a common transition ( z = 2.586, p = 0.0097, 𝛽 = 0.380).
hus, participants demonstrated both model-based and model-free el-
ments of learning. However, as shown in Fig. 5 (right), the balance
f model-based and model-free contributions appeared to be overall bi-
sed towards more model-free learning, without significant differences
etween groups (stress × reward, z = − 1.048, p = 0.295, 𝛽 = − 0.330;
tress × reward × transition, z = − 1.181, p = 0.238, 𝛽 = − 0.235). 

.4. Stress effects on model-based and model-free parameters 

In a next step, we used reinforcement learning models to dissoci-
te model-free and model-based contributions to participants’ trial-by-
rial choices. We fitted choice behavior to a dual-system reinforcement
earning model which includes both model-free and model based learn-
ng strategies ( Daw et al., 2011 ; Gläscher et al., 2010 ). The algorithm
ontained 7 parameters, fitted individually for each participant. 

We assumed that choices were driven by the weighted average
f these two computations. The weighting parameter w shows a pre-
ominance of model-free proportions in choice behavior (mean control
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Fig. 4. Stress reduces the behavioral sensitivity to reversals in the first stage. The proportion of advantageous first stage choices is higher in the four trials before 
a reversal than in the four trials after a reversal, indicating that the reversals have an effect on behavior (A, B). The sensitivity index, computed as the mean of 
advantageous choices before vs. after a reversal, is significantly higher in the control group than in the stress group in the first stage (A), while the sensitivity index 
for the second choice does not differ between the stress group and the control group (B). Right panels: Model simulations with best fitting parameters for the trials 
around the reversals show a pattern similar to the actual behavioral data. 

Fig. 5. Factorial analysis of choice behavior. Left: Pure model-free reinforcement learning predicts that a previously rewarded action is more likely to be repeated 
on the subsequent trial, regardless of whether that reward occurred after a common or a rare transition. Pure model-based behavior comprises a knowledge of the 
task structure: a reward obtained via a rare transition predicts a switch to the other option. Middle: Data obtained from a posterior predictive check using the set of 
model parameters estimated for each participant suggests a mixture of both model-free and model-based learning strategies. Right: Actual Data. Participants show 

both model-based and model-free learning with an overall bias toward model-free learning, independent of group assignment. 

9 
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Fig. 6. Stress effects on the model parameters. Best-fitting parameter estimates, 
shown across subjects. The stress group tended to show a reduced temperature in 
the first stage, compared to the control group (t(56) = 1.96, p = 0.056, d = 0.51), 
indicating more random or exploring choice behavior; no group differences in 
the eligibility parameter 𝜆, the two learning rates 𝛼1 and 𝛼2 , the stay bias 𝑝 , or 
the weighting parameter 𝑤 ; error bars represent standard errors of the mean, # 

p < 0.06 for the comparison between the stress group and the control group. 
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roup: 0.38, mean stress group: 0.37, test against 0.50: both p < 0.001),
hich was comparable in the stress and control groups (t(56) = 0.10,
 = 0.918, d = 0.03), indicating that acute stress did not alter the weight
f model-free and model-based contributions to learning per se ( Fig. 6 ).
owever, the temperature parameter for the first stage choice tended to
e lower in the stress group (t(56) = 1.96, p = 0.056, d = 0.51; all other
arameters remained unaffected by stress, all p > 0.20, Fig. 6 ). This tem-
erature parameter was significantly positively associated with both the
roportion of advantageous first stage choices (r(56) = 0.45, p = 0.0004)
nd the sensitivity index (r(56) = 0.44, p = 0.0006). In the second stage,
he corresponding temperature parameter was also positively correlated
ith the proportion of advantageous choices (r(56) = 0.48, p = 0.0002),
s well as the sensitivity index ( r = 0.48, p = 0.0002). Furthermore, the
nverse temperature parameter reflects the extent to which the under-
ying value computations are used to guide choices, in the sense of an
xploration – exploitation trade off or a measure of choice stochastic-
ty. Our results thus point to a rather explorative choice behavior in the
tress group, or more random first stage decisions, suggesting that the
tressed participants did not use the first decision as a planning step
or the second stage, but may have randomly made the first decision in
rder to proceed to the reward-guided second choice. In other words,
tress appeared to affect the utilization of value computations for the
rst stage choice. 

These results are in line with our findings that stress reduced the
ensitivity to reversals in the first stage. In addition, we tested whether
he sensitivity index correlates with the weighing parameter 𝑤 . Our re-
ults showed no such correlation ( r = − 0.17, p = 0.19). The absence of
 correlation between the weighing parameter and participants’ sensi-
ivity to a reversal was not surprising given that we assume that both
odel-based and model-free processes may contribute to flexible learn-

ng and the sensitivity to changes in the environment. Further modeling
arameters did not correlate with the sensitivity index (all r ⟨ |0.22|, all
 ⟩ 0.1). 

.5. Stress affects the neural underpinnings of both model-based and 

odel-free learning 

Our behavioral results suggested that the stress group tended to
how more explorative or random choice behavior at the first stage
10 
han the control group. Directly building on this pattern of results, we
ompared the brain activity at advantageous first stage choices with
isadvantageous at that time point between the stress and the control
roup. This analysis showed that stressed participants had significantly
educed activity in the medial prefrontal cortex (mPFC; peak − 16 10
2, p svc = 0.03, FWE, Fig. 7 B), compared to the control group. Com-
aring advantageous choices to disadvantageous choices in the second
tage, the control group tended to show a higher activity in the ventral
triatum (peak 2 10 − 8, p svc = 0.07, FWE). 

Next, we regressed the model-derived prediction errors against the
MRI data collected during the Markov task. Corroborating earlier re-
orts ( Daw et al., 2011 ; Gläscher et al., 2010 ; Lee et al., 2014 ), our
ata pooled over both groups showed that reward prediction-errors were
omputed in the lateral OFC, ilPFC, mPFC, ventral striatum, putamen,
nsula and in the hippocampus (all p svc < 0.016, FWE). Reward onsets
ere associated with activity in the ilPFC, mPFC and insula (all p svc <

.03, FWE). Interestingly, reward onsets were associated with increased
ctivity in the posterior hippocampus (peak − 22 − 34 − 2, p svc = 0.018,
WE, Fig. 7 C) in the stress group. The computation of model-free pre-
iction errors was associated with the lateral OFC, the ventral striatum
nd the anterior hippocampus (all p svc < 0.017, FWE) and model-based
rediction errors with activity in the hippocampus, lateral OFC, mPFC
nd putamen (all p svc < 0.009, FWE). 

The table shows MNI (Montreal Neurological Institute) coordinates
or local maxima in mm. All areas with k > 5 significant voxels are
eported. For our regions of interest (ROIs), we implemented small vol-
me correction (SVC) using an initial threshold of p < 0.05, uncorrected.
he significance threshold was set to p < 0.05, family wise error (FWE)
orrected. 

Most interestingly, these neural underpinnings of both model-free
nd model-based learning were affected by stress ( Table 2 ). Compared
o controls, stressed participants showed reduced correlations between
OLD activity and model-free prediction errors in the right ilPFC (peak
8 32 − 8, p svc = 0.005, FWE; Fig. 7 A) and a tendency to reduced ac-
ivation in the left amygdala (peak − 24 − 8 − 18, p svc = 0.059, FWE).
or model-based prediction errors, stressed participants showed, rela-
ive to controls, reduced activity in the right putamen (peak 30 − 10 12,
 svc = 0.032, FWE, Fig. 7 D) and a higher activation in the right ilPFC
peak 48 32 − 8, p svc = 0.005, FWE, Fig. 7 D). At trend level, stress in-
reased activity in the right insula (peak 32 30 − 2, p svc = 0.059, FWE)
nd led to a decrease in the activity of the right amygdala (peak 30 − 4
 20, p svc = 0.054, FWE). Moreover, stress tended to reduce activity in

he hippocampus (peak − 24 − 34 − 4, p svc = 0.078, FWE), a region only
ather recently implicated in model-based behavior ( Vikbladh et al.,
019 ). Because it is assumed that there is a functional separation along
he hippocampal anterior-posterior axis ( Fanselow and Dong, 2010 ;
oppenk et al., 2013 ; Strange et al., 2014 ), we further subdivided the
ippocampus into anterior and posterior parts, in accordance with pre-
ious studies ( Collins et al., 2015 ; Dandolo and Schwabe, 2018 ), and
ested whether the obtained stress effect was specific to the anterior or
osterior hippocampus. This analysis revealed that stress affected in-
eed solely the posterior hippocampal contribution to model-based be-
avior (peak − 24 − 34 − 2, p svc = 0.019, FWE), while there was no stress
ffect on the anterior hippocampus (left: p svc = 0.78, right: p svc = 0.17,
WE). 

.6. Exploratory analysis of control variables and working memory 

nfluences 

To control for personality traits and behavioral tendencies that may
ffect flexible learning or modulate stress effects on flexible learning, we
easured state anxiety, trait anxiety, depressive symptoms and chronic

tress via the STAI-S, STAI-T, BDI and TICS, respectively. Because one
ubject code was mistakenly assigned twice, we could not use the ques-
ionnaire data of two participants, resulting in n = 56 for the follow-
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Fig. 7. Stress reduces posterior hippocampal activity during model-based learning and inferiorlateral prefrontal activity during model-free learning. (A) The stress 
group showed reduced activity during model-free error computation contrary to the control group in the right ilPFC. (B) The stress group showed reduced activity in 
the mPFC during advantageous choices in the first stage. (C) The stress group showed a higher activity in the posterior hippocampus during reward computations, 
compared to the control group. (D) Model-based prediction errors were associated with a stress-induced reduction of the posterior hippocampus and the putamen, 
while the stress group showed an increased activity in the ilPFC, compared to the control group. Data are thresholded at p < 0.05, uncorrected, for display purposes 
only. Parameter estimates were extracted for the peak voxel; error bars represent standard errors of the mean, ∗ ∗ ∗ p < 0.001 for the comparison between the stress 
group and the control group. 

Table 2 

Stress effects on neural representations of learning computations. 

contrast name ROI name Cluster P FWE t max MNI coordinates 

X Y Z 

Model-based prediction errors 

control > stress 

control > stress 

posterior hippocampus (L) 

putamen (R) 

64 

74 

0.019 

0.032 

3.98 

4.02 

− 22 

30 

− 34 

− 10 

− 2 
12 

stress > control ilPFC (R) 72 0.047 3.61 48 32 − 8 
Model-free prediction errors 

control > stress ilPFC (R) 128 0.005 4.58 48 32 − 8 
Rewards 

stress > control posterior hippocampus (L) 35 0.018 4.00 − 22 − 34 − 2 
Optimal first stage choices 

control > stress mPFC (L) 26 0.035 4.88 − 16 10 62 
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ng analyses. Importantly, stress and control groups did not differ in
epressive symptoms (t(54) = 1.62, p = 0.11, d = 0.43), state anxi-
ty (t(54) = 0.33, p = 0.74, d = 0.089), trait anxiety (t(54) = 1.16,
 = 0.25, d = 0.31), or subjective chronic stress (t(54) = 0.89, p = 0.38,
 = 0.24, Table 1 ). Furthermore, in light of previous evidence suggesting
hat anxiety, depressive symptoms or chronic stress may be associated
ith the vulnerability to stress and changes in model-based behavior
 Nasca et al., 2015 ; Radenbach et al., 2015 ; Weger and Sandi, 2018 ),
e further tested whether the questionnaire data correlated with the

ensitivity index or model-derived parameters. These analyses yielded
o significant correlations between the sensitivity index and state / trait
nxiety, chronic stress, or depressive symptoms (stress: all |r| < 0.16,
ll p > 0.4, control: all |r| ⟨ 0.37, all p ⟩ 0.06, all participants: all |r| ⟨
.25, all p ⟩ 0.06), except for a significant negative correlation between
TAI-S scores and the sensitivity index in the control group ( r = − 0.418,
 = 0.03), which would however not survive a correction for multiple
omparisons. When we subdivided participants into subgroups based
n a median-split on the respective questionnaire score, we obtained
vidence suggesting that acute stress might influence participants’ be-
11 
avioral response to the reversal in particular in individuals with high
rait or state anxiety. Further, stress and control groups appeared to dif-
er in particular when participants reported low chronic stress and low
evels of depressive mood (see supplemental Figure S1 and supplemen-
al Table S2). These analyses, however, were exploratory and need to
e interpreted with great caution. 

Because there is evidence that high baseline working memory might
rotect model-based learning from deleterious stress effects ( Otto et al.,
013 ), participants completed an n-back test, as common measure of
orking memory ( Owen et al., 2005 ), before they underwent the stress
r control manipulation. The working memory data of four participants
re missing due to technical failure. Importantly, groups did not dif-
er in baseline working memory performance (t(52) = − 1.38, p = 0.17,
 = − 0.38). When we analyzed correlations between baseline working
emory performance on the one hand and the task performance (i.e. the

ensitivity index) on the other hand, we obtained no significant correla-
ions, neither within the stress or control groups (stress: r(23) = 0.293,
 = 0.155; control: r(27) = − 0.004, p = 0.984), nor across all partici-
ants ( r = 0.178, p = 0.197). These correlational data suggest that base-
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Fig. 8. Stress effects, separately for high and low baseline working memory capacity, as measured with an n-back task. (A) Our data suggest that subjects with 
low working memory are particularly susceptible to stress effects on flexible learning, yet the interaction between stress and working memory is not statistically 
significant. (B) The sensitivity index, computed by the mean of advantageous choices before vs. after a reversal, is significantly higher in the control group (high and 
low working memory) than in the low working memory stress group (t(39) = 2.88, p = 0.006. d = 0.99). (C) Posterior predictive behavior in the trials around the 
reversal, separately for individuals with high and low working memory capacity in the stress group and in the control group, confirms that the model predictions 
match the actual behavior, except for a deviation in the stress/low working memory group; ∗ ∗ ∗ p < 0.001, ∗ ∗ p < 0.01 and ∗ p < 0.05 for the comparison between the 
groups; error bars represent standard errors of the mean. 
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ine working memory does not modulate the impact of stress on learn-
ng performance. However, it may also be assumed that a differential
usceptibility to stress effects is less modulated by gradual differences
n the working memory, but is rather apparent at particularly high or
articularly low scores of working memory. Therefore, we tested in a
ext step whether stress affected the proportion of advantageous first
tage choices 4 trials before vs. 4 trials after a reversal differently in
igh vs. low working memory groups, respectively. High and low work-
ng memory groups were defined based on a median split on the n-back
erformance. The performance of the high- and low working memory
articipants in the stress and control groups is shown in Fig. 8 A. Al-
hough Figs. 8 A and B suggest that the sensitivity for the change in
eward contingencies was particularly affected in stressed participants
ith low baseline working memory capacity (t(39) = 2.88, p = 0.0065),
hile the high-working memory stress group and the control group
id not differ (t(40) = 1.09, p = 0.282), the respective working mem-
ry × stress interaction was not statistically significant (F(52) = 0.89,
 = 0.35, 𝜂2 

ges = 0.01). 
Again, we tested whether our model’s predictions matched the pat-

ern found in the behavioral data around the reversals and therefore
enerated 50 simulations for each participant’s individual set of param-
ters. These simulations showed a pattern that strongly resembled the
ctual data, except for the stress/low working memory group ( Fig. 8 C).
or this group, the correspondence between the simulated and the ac-
ual data was lower. In the actual data, the behavior is hardly influenced
y the contingency changes, while the simulations show a decrease of
he advantageous decisions after a reversal. However, the order of the
our groups in the posterior predictive behavior is broadly consistent
ith the measured data, i.e. also in the simulated data the stress/low
orking memory group shows the smallest difference from pre- to post-

eversal. However, the difference between pre- and post-reversal can
till be clearly seen in the simulations, which is not reflected in the ac-
ual data. This can be explained by the much smaller sub-sample size in
he measured data (data n = {10,12,13,19} vs. 50 in the simulations).
n the other hand, this indicates that there are other sources of noise

n the measured data that cannot be mapped with the learning model of
he Markov decision task. 

After analyzing the influence of working memory capacity on the
erformance in the Markov decision task, we investigated whether
orking memory was associated with the model parameters. Scores in
 m  

12 
he n-back task were overall positively correlated with the temperature
arameter in stage 1 ( r = 0.3, p = 0.03) and tended to be associated with
 higher temperature parameter in the second stage ( r = 0.26, p = 0.06).
iven that the temperature parameter determines to which extent the

earned information is used to guide subsequent choices, the observed
ink to working memory processes is not surprising and might also point
o general cognitive capacities that contribute to both flexible learning
nd working memory. Moreover, high n- back scores tended to be associ-
ted with a lower learning rate in the second stage ( r = − 0.26, p = 0.06,
upplemental table S3). However, there were no significant correlations
etween working memory and model parameters in the stress and con-
rol groups (all p > 0.177) and there were no significant main or interac-
ion effects including the factor stress in our working memory × group
NOVA (all F(50) ⟨ 1.78, all p ⟩ 0.19). 

. Discussion 

Successful adaptation to dynamic environments is crucial for sur-
ival, particularly under highly stressful or threatening conditions.
tress, however, is assumed to impede behavioral flexibility ( Otto et al.,
013 ; Plessow et al., 2011 ; Raio et al., 2017 ; Schwabe and Wolf, 2011 ;
ogel et al., 2016 ). Here, we sought to shed light on the neurocom-
utational mechanisms involved in the stress-induced deficit in flexible
earning. Our behavioral data show that stress indeed reduced partici-
ants’ sensitivity to changes in outcome contingencies. In line with these
ata, our model-based analyses suggest that stress tended to favor rather
xplorative behavior, as reflected in the tendency of a reduced softmax
emperature for the first stage decision. We assume that this is mod-
rated by a reduced utilization of value signals negotiated by model-
ased and model-free processes. Most importantly, our model-based
MRI analyses revealed that stress reduced the contributions of struc-
ures implicated in model-based control and those involved in model-
ree control of learning. 

To tackle specifically the flexibility of learning, we modified the orig-
nal Markov decision task ( Daw et al., 2011 ) by including several re-
ersals in reward contingencies. This modification increased the task
ifficulty and made it more demanding to establish a valid model of
he task structure, thus favoring, irrespective of stress, model-free over
odel-based learning. Indeed, although we obtained clear evidence for
odel-based contributions, model-free elements prevailed during learn-



A. Cremer, F. Kalbe, J. Gläscher et al. NeuroImage 229 (2021) 117747 

i  

t  

r  

r  

t  

a  

s  

t  

b  

c  

e  

O  

i  

c  

m  

i  

e  

i  

t  

i  

o  

e
 

o  

r  

p  

p  

s  

t  

i  

s  

i  

fi  

t  

L  

f  

i  

f  

f  

a  

t  

o  

r  

a  

u  

b  

m  

b  

t  

f  

p  

o  

v
 

v  

o  

s  

d  

m  

i  

m  

i  

g  

i  

l  

(

 

a  

f  

l  

m  

g  

i  

m  

i  

a  

t  

(  

t  

a  

A  

t  

p  

b  

t  

p  

h  

t  

m  

a  

d  

p  

m  

i  

t  

(  

d  

m  

t  

p  

e
 

a  

t  

t  

t  

i  

d  

f  

D  

i  

m  

v  

m
 

d  

p  

r  

m  

M  

t  

c  

p  

l  

n  

n  

(  

o  

t  

m  

i  

u  
ng. This overall bias towards more model-free learning, reflected in par-
icipants’ stay probabilities and the weighing parameter w , corroborates
ecent research suggesting that task complexity facilitates an increased
eliance on model-free learning ( Kim et al., 2018 ). The task-related bias
owards more model-free learning may explain why we did not observe
 further stress-induced shift towards model-free learning that has been
uggested before ( Park et al., 2017 ). Accordingly, the proposed bias
owards model-free learning associated with the modified task might
e considered a limitation, although it is to be noted that participants’
hoice behavior and the computational modeling parameters provided
vidence for both model-based and model-free learning mechanisms.
ur behavioral data point to an impairment of flexible learning that

s not owing to an altered balance of model-based and model-free pro-
esses but rather to a reduced contribution of both model-based and
odel-free processes to behavior, in contrast to earlier findings suggest-

ng mainly a stress-induced impairment of model-based learning ( Otto
t al., 2013 ). The observed impairment seemed to be most pronounced
n individuals with low working memory capacity. Although the respec-
ive interaction effect did not reach statistical significance, this pattern
s generally in line with evidence suggesting that a high working mem-
ry capacity may prevent stress effects on model-based learning ( Otto
t al., 2013 ). 

Although our behavioral data may be interpreted as an indication
f impaired flexible learning after stress due to reduced sensitivity for
eversals, an alternative view would be that stress encourages more ex-
lorative choices at the first stage. More specifically, stressed partici-
ants may have learned the stimulus-action-reward-associations in the
ame way as controls but nevertheless tend not to use this information
o guide their behavior. This is indicated by the trend towards a stress-
nduced reduction of the first stage temperature parameter and further
upported by the positive correlation between the first stage sensitivity
ndex and both stage’s temperature parameters. At first glance, these
ndings might seem to be in conflict with previous findings suggesting
hat stress leads to rather exploitative decisions ( Lenow et al., 2017 ;
uksys and Sandi, 2011 ). However, these previous studies used classical
oraging tasks and such tasks require a different type of decision-making
n which the overall environment is used as a proxy for the value of
uture unknown options, compared to current prospects. Thereby, the
ocus is on reward calculations which usually determine the switch to
 new option below a certain threshold, while the focus in the present
ask is to maintain probabilistic rules to guide actions. Therefore, an-
ther possible explanation is that working memory mediates the explo-
ative choice behavior in the first stage, given that exploration could
lso be due to an inability to maintain the relevant information to guide
pcoming decisions. In line with this idea, performance appeared to
e particularly explorative after stress in participants with low working
emory performance. Increased explorative behavior in this task can be

oth advantageous and disadvantageous: it prevents the reliable repeti-
ion (exploitation) of a learned contingency but protects against a per-
ormance drop when contingencies change. This could explain why the
roportion of advantageous decisions did not differ between the groups
verall, while there were group differences in the trials around the re-
ersals. 

Our data provided initial evidence that stressed participants use
alue information less for their decision in the first, but not the sec-
nd stage, as indicated by the softmax temperature parameter and the
ensitivity index. This view is further supported by a significantly re-
uced sensitivity index in the stressed participants with low working
emory capacity, given the fact that working memory holds behav-

orally relevant information to guide action. The stress-related impair-
ent in first stage choices was accompanied by reduced activity in the

lPFC in the stress group during first stage onset compared to the control
roup. Thus, the reduced behavioral sensitivity to reversals may be ow-
ng to detrimental stress effects on the ilPFC, which has previously been
inked to the arbitration between model-based and model-free learning
 Lee et al., 2014 ). 
13 
In support of the view that stress interfered with both model-based
nd model-free control, our imaging findings showed that stress af-
ected the neural underpinnings of both model-free and model-based
earning. More specifically, stress reduced the activity associated with
odel-free prediction errors in the ilPFC. At the same time, the stress

roup showed an increase in ilPFC activity during model-based learn-
ng. The ilPFC has been associated with an arbitrator signal that deter-
ines whether behavior is guided by model-based or model-free learn-

ng systems ( Lee et al., 2014 ). It is assumed that this arbitrator reduces
ctivity in brain areas implicated in model-free learning when the arbi-
rator deems that behavior should be guided by the model-based system
 Lee et al., 2014 ). Accordingly, a stress-induced increase in ilPFC ac-
ivity related to model-based learning processes may be paralleled by
 decrease or suppression of the model-free system, as observed here.
t the same time, stress decreased activity during model-based predic-

ion error computations in the putamen and posterior hippocampus. In
articular the hippocampus has very recently been implicated in model-
ased planning ( Schuck and Niv, 2019 ; Vikbladh et al., 2019 ). In fact,
he idea of a cognitive map stored in the hippocampus has been pro-
osed already several decades ago ( O’Kneefe and Nadel, 1978 ). For long,
owever, this idea was limited to spatial references. A recent integra-
ive approach suggests that the hippocampus may also encode cognitive
aps that capture complex relationships between cues, actions, results

nd other characteristics of the environment, enabling flexible, goal-
irected decision making ( Wikenheiser and Schoenbaum, 2016 ). Im-
ortantly, however, the hippocampus may not as whole be involved in
odel-based learning. Accumulating evidence from human neuroimag-

ng and rodent lesion studies suggests a functional dissociation within
he hippocampus along its anterior (ventral) – posterior (dorsal) axis
 Poppenk et al., 2013 ; Zeidman and Maguire, 2016 ). In a recent ro-
ent study, specifically the dorsal (posterior) hippocampus was linked to
odel-based planning behavior ( Miller et al., 2017 ). This finding dove-

ails with the present data showing that stress reduced specifically the
osterior hippocampal activity associated with model-based prediction
rrors. 

These neural changes are most-likely driven by the many hormones
nd neurotransmitters that are released in response to stressful encoun-
ers. Receptors for these stress mediators are abundantly expressed in
hose regions involved in model-based and model-free learning, in par-
icular, in prefrontal and limbic areas ( Herman et al., 2003 ). Accord-
ngly, it has been shown across tasks and species that these stress me-
iators, including catecholamines and glucocorticoids, may affect pre-
rontal and limbic activity and function ( Arnsten, 2009 ; J. J. Kim and
iamond, 2002 ). Most interestingly with respect to the present findings,

t has been shown that glucocorticoids may reduce specifically posterior
edial temporal activity during a declarative memory task ( de Quer-

ain et al., 2003 ), exactly that region that was reduced by stress during
odel-based processing. 

Finally, one might argue that the modification of the original Markov
ecision task impacts the assessment of model-based and model-free
rocesses in our task. While the present task modification, which was
equired to probe flexible learning in a highly volatile environment,
ight complicate the direct comparison to studies using the classical
arkov decision task to some extent, we assume that also the modified

ask version allows the assessment of model-based and model-free pro-
esses. First, participants’ choice behavior and our modeling parameters
rovided evidence for the involvement of model-based and model-free
earning mechanisms. Furthermore, our neuroimaging data revealed
eural activity patterns that are well in line with the previously reported
eural signatures of model-based and model-free learning, respectively
 Daw et al., 2011 ; Gläscher et al., 2010 ; Vikbladh et al., 2019 ). More-
ver, the contingency reversals required participants to learn the new
ransitions, whereas these transitions were assumed to be known by our
odel. To test whether this affected the performance of our model, we

mplemented an enhanced model that included state space learning as
sed in Gläscher et al. (2010) (see Methods for details). Model simula-
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ions showed only slightly worse model performance that this enhanced
odel and our winning model were very similar in their capacity to
t the experimental data. Further analyses also revealed that the tran-
ition probabilities in the Markov decision task are learned within the
rst 10 trials. This supports our original model choice, in which state
pace learning was omitted. 

Together, our data show that stress reduces both model-free and
odel-based computations during learning in a highly volatile envi-

onment. These findings provide novel insights into the neurocom-
utational mechanisms through which stress hampers the cognitive
daptation to highly volatile environments. A better understanding of
hese mechanisms may aid the development of new approaches to pre-
ent such stress-induced deficits, with considerable implications, for in-
tance, for educational settings ( Vogel and Schwabe, 2016 ) and stress-
elated psychopathologies characterized by a deficit in the flexible adap-
ation to dynamic environments ( Koob and Kreek 2007 ; LaGarde et al.,
010 ; de Quervain et al. 2017 ). 
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