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Abstract Decisions are often made by accumulating ambiguous evidence over time. The brain’s

arousal systems are activated during such decisions. In previous work in humans, we found that

evoked responses of arousal systems during decisions are reported by rapid dilations of the pupil

and track a suppression of biases in the accumulation of decision-relevant evidence (de Gee et al.,

2017). Here, we show that this arousal-related suppression in decision bias acts on both

conservative and liberal biases, and generalizes from humans to mice, and from perceptual to

memory-based decisions. In challenging sound-detection tasks, the impact of spontaneous or

experimentally induced choice biases was reduced under high phasic arousal. Similar bias

suppression occurred when evidence was drawn from memory. All of these behavioral effects were

explained by reduced evidence accumulation biases. Our results point to a general principle of

interplay between phasic arousal and decision-making.

Introduction
The global arousal state of the brain changes from moment to moment (Aston-Jones and Cohen,

2005; McGinley et al., 2015b). These global state changes are controlled in large part by modula-

tory neurotransmitters that are released from subcortical nuclei such as the noradrenergic locus

coeruleus (LC) and the cholinergic basal forebrain. Release of these neuromodulators can profoundly

change the operating mode of target cortical circuits (Aston-Jones and Cohen, 2005;

Froemke, 2015; Harris and Thiele, 2011; Lee and Dan, 2012; Pfeffer et al., 2018). These same

arousal systems are phasically recruited during elementary decisions, in relation to computational

variables such as uncertainty about making the correct choice and surprise about decision outcome

(Aston-Jones and Cohen, 2005; Bouret and Sara, 2005; Colizoli et al., 2018; Dayan and Yu,

2006; Krishnamurthy et al., 2017; Lak et al., 2017; Nassar et al., 2012; Parikh et al., 2007;

Urai et al., 2017).
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Most decisions – including judgments about weak sensory signals in noise – are based on a pro-

tracted accumulation of decision-relevant evidence (Shadlen and Kiani, 2013) implemented in a dis-

tributed network of brain regions (Pinto et al., 2019). In perceptual decisions, noise-corrupted

decision evidence is encoded in sensory cortex, and downstream regions of association and motor

cortices accumulate the fluctuating sensory response over time into a decision variable that forms

the basis of behavioral choice (Bogacz et al., 2006; Shadlen and Kiani, 2013; Siegel et al., 2011;

Wang, 2008). All of these brain regions are impacted by the brain’s arousal systems. Thus, phasic

arousal might shape the encoding of the momentary evidence, the accumulation of this evidence

into a decision variable, and/or the implementation of the motor act.

We previously combined fMRI, pupillometry and behavioral modeling in humans to illuminate the

interaction between phasic arousal and perceptual evidence accumulation (de Gee et al., 2017). We

found that rapid pupil dilations during perceptual decisions report evoked responses in specific neu-

romodulatory (brainstem) nuclei controlling arousal, including the noradrenergic LC. We also showed

that those same pupil responses track a suppression of pre-existing biases in the accumulation of

perceptual evidence. Specifically, in perceptual detection tasks, spontaneously emerging ‘conserva-

tive’ biases (towards reporting the absence of a target signal) were reduced under large phasic

arousal. Thus, it remains an open question whether phasic arousal promotes liberal decision-making,

or suppresses biases in either direction (conservative and liberal).

It is also unclear whether the impact of arousal generalizes to decisions that are based on non-

sensory evidence, such as memory-based decisions. Elementary perceptual choice tasks are an

established laboratory approach to studying decision-making mechanisms, but many important real-

life decisions (e.g. which stock to buy) are also based on information gathered from memory. Recent

advances indicate that such decisions may entail the accumulation of decision-relevant evidence

drawn from memory (Shadlen and Shohamy, 2016).

Finally, it is also unknown whether the impact of arousal on decision-making generalizes from

humans to rodents. This is important because rodents are increasingly utilized as experimental mod-

els for studying decision-making mechanisms (Carandini and Churchland, 2013; Najafi and Church-

land, 2018). Indeed, rodents (rats) can accumulate perceptual evidence in a similar fashion to that in

humans (Brunton et al., 2013), their arousal systems are organized homologously with those of

humans (Amaral and Sinnamon, 1977; Berridge and Waterhouse, 2003), and pupil dilation reports

arousal also in rodents (McGinley et al., 2015b; Reimer et al., 2014; Vinck et al., 2015). But the

interplay between phasic arousal and decision-making in rodents remains unknown.

Here, we address the issues pertaining to the interplay between phasic arousal and decision-mak-

ing outlined above. Specifically, we asked (i) whether the phasic arousal-linked suppression of deci-

sion biases generalizes from humans to rodents; (ii) whether phasic arousal predicts liberal decision-

making, or a suppression of both liberal and conservative biases; and (iii) whether the interaction

between phasic arousal and decision biases generalizes from perceptual to memory-based decisions.

We addressed these questions by combining pupillometry and computational model-based analyses

of behavior, in both humans and mice (Badre et al., 2015), and by studying human decision-making

in several contexts.

Results
We measured pupil-indexed phasic arousal while humans and mice performed the same auditory

go/no-go detection task. To test for generality across domains of decision-making, humans per-

formed a forced choice (yes/no) detection task that was based on the same auditory evidence under

systematic manipulations of target probabilities, as well as a memory-based decision task.

In humans and mice, phasic arousal tracks a reduction of choice bias
We first trained mice (N = 5) and humans (N = 20) to detect a near-threshold auditory signal

(Figure 1A,B; ’Materials and methods’). Each trial was a distinct auditory noise stimulus of 1 s dura-

tion. A weak signal tone was added to the last trial in a mini block of two-to-seven consecutive trials

(Figure 1A). The number of trials, and thus the signal position in the sequence, was drawn randomly
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with signal probability that decreased across the mini block (Figure 1—figure supplement 1A, left).

Because stable signals were embedded in fluctuating noise, detection performance could be maxi-

mized by accumulating the sensory evidence over time, within each trial. To indicate a yes choice,

mice licked for sugar water reward and human subjects pressed a button. Reaction times (RTs)

decreased and perceptual sensitivity (d0, from signal detection theory; see ’Materials and methods’)

increased with tone loudness (Figure 1—figure supplement 1D,E). We quantified phasic arousal as

the rising slope of the pupil, measured immediately after trial onset (see ’Materials and methods’).

We chose this measure (i) for its temporal precision in tracking arousal during fast-paced tasks

(Figure 1C), (ii) to eliminate contamination by movements, and (iii) to track noradrenergic

activity most specifically (Reimer et al., 2016), which may play a specific role in decision-making

(Aston-Jones and Cohen, 2005; Dayan and Yu, 2006). Thus, we use the pupil response derivative

as a proxy for the amplitude of the phasic response of central arousal systems. In what follows, we

refer to this as the ‘pupil response’ for simplicity.

Pupil responses occurred as early as 40 ms after trial onset in mice (Figure 1C, top), and from

240 ms after trial onset in humans (Figure 1C, bottom). Because trial timing was predictable,
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Figure 1. High phasic arousal is associated with reduced perceptual choice bias. (A) Auditory go/no-go detection

task. Schematic sequence of discrete trials in a mini block (see ’Materials and methods’). Subjects responded to a

weak signal (stable pure tone) in fluctuating noise and withheld a response for noise-only trials. (B) Combination of

stimulus (signal+noise vs. noise) and choice (go vs. no-go) yielded the four categories of signal detection theory.

(C) Change in pupil diameter (solid line) and its temporal derivative (dashed) in mice (top) and humans (bottom).

Gray window, interval for extracting task-evoked pupil responses (see ’Materials and methods’); black bar,

significant pupil derivative (p<0.05, cluster-corrected one-sample t-test). (D) Relationship between pupil response

(equal size bins, see ’Materials and Methods’) and choice bias in mice (top) and humans (bottom). We assumed

that subjects set a single decision criterion (see also Figure 1—figure supplement 1B,H). (E) As panel (D), but for

mean reaction time (RT) and sensitivity (d0). For panels (C–E): group average (N = 5; N = 20); shading or error bars,

s.e.m. Solid lines, linear or quadratic fits to binned data (linear fits are shown where first-order fit was superior to

constant fit, quadratic fits are shown where second-order fit was superior to first-order fit). Blue ‘X’s, predictions

from the best fitting drift diffusion model (see Figure 4 and associated text); p-values, mixed linear modeling

(predictors are ‘loudness’ = signal loudness and ‘pupil’ = pupil bin).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Additional analyses of data from auditory go/no-go detection task.
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subjects were able to anticipate the sound starts, and to align their arousal response to trial onset.

The shorter pupil response latencies in mice compared to humans might be due to species differen-

ces in impulsivity, timing estimation and/or physical properties (their smaller eye and brain size).

Pupil dilations occurred on all trials, whether or not there was a behavioral response (Figure 1—

figure supplement 1F), as also observed previously (Lee and Margolis, 2016; Schriver et al.,

2020). However, as in our earlier work (de Gee et al., 2017), we found a relationship between the

early, task-evoked pupil response and choice bias. Both mice and humans had an overall conserva-

tive choice bias, often failing to report the signal tones (Figure 1D; bias computed after collapsing

across signal loudness levels; see also Figure 1—figure supplement 1B,H and ’Materials and meth-

ods’). In both species, this conservative bias was significantly reduced in trials characterized by large

pupil responses (Figure 1D). Mice were faster and more sensitive in trials that were characterized by

large pupil responses, but this relationship did not generalize to humans (Figure 1E).

Correlation between pupil response and choice bias is not due to motor
factors
One concern in the go/no-go task is that the bias suppression associated with pupil dilation was

related to the motor response for go choices. The central input to the pupil contains a transient

around the motor response (de Gee et al., 2014; de Gee et al., 2017; Hupé et al., 2009;

Murphy et al., 2016). Such transient activity at lick or button-press responses would contribute to

pupil responses in trials with go-choices, but not in trials with no-go choices. This might produce the

observed correlation between mean pupil response (more motor transients) and more liberal choice

bias (more go-choices). We here minimized contamination by the transient motor-related compo-

nent by focusing on the very early component of pupil response (see ’Materials and methods’).

However, this approach did not correct for any asymmetry between go and no-go trials in terms

of motor preparatory activity, which commonly ramps up during perceptual decision formation sec-

onds before response execution (Donner et al., 2009; Shadlen and Kiani, 2013). Also the central

input to the pupil during decision formation contains a sustained component, which might, at least

in part, be related to motor preparatory activity (de Gee et al., 2014; de Gee et al., 2017;

Murphy et al., 2016). To address this concern further, we re-analyzed results from the forced-choice

(yes/no) version of the task (Figure 2A; ’Materials and methods’), which were published previously

(de Gee et al., 2017) and which partly stemmed from the same participants as those that produced

the go/no-go data. In yes/no detection tasks, both motor responses and associated motor prepara-

tory activity are balanced across yes and no choices (Donner et al., 2009). We found that pupil

responses in the go/no-go and yes/no tasks were correlated across participants, for both yes and no

choices (Figure 2—figure supplement 1A). This result indicates that pupil response in both tasks

primarily reflected decision processing rather than motor preparation or execution. Furthermore, we

observed an arousal-linked suppression of perceptual choice bias (Figure 2E, top). Taken together,

the results indicate that the pupil-linked reduction of choice bias (Figure 1 and 2) is not due to

motor factors.

Phasic arousal tracks a reduction of both conservative and liberal
perceptual choice biases
All mice and humans in the above go/no-go protocol, and the majority of human subjects in the

above yes/no task, exhibited a conservative bias, or tendency to choose ‘no’, which was reduced in

trials with large pupil response (Figure 1D and Figure 2E, top). We thus wondered whether phasic

arousal predicts liberal decision-making or rather a suppression of any pre-existing bias, be it liberal

or conservative. To address this, we asked a new group of human subjects (N = 15) to perform the

same auditory yes/no (forced-choice) detection task, but with a different probability of signal occur-

rence in blocks. In ‘rare’ blocks, the signal occurred in 30% of trials, whereas in ‘frequent’ blocks, the

signal occurred in 70% of trials (Figure 2B; see ’Material and methods’). As expected (Green and

Swets, 1966), subjects developed a conservative bias in the rare signal condition and a liberal bias

in the frequent signal condition (Figure 2C). Importantly, pupil response predicted a change in

choice biases towards neutral for both block types (performed within the same experimental session)

(Figure 2E). As in the go/no-go task, pupil responses were not consistently associated with RT or
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sensitivity (Figure 2F). In sum, phasic arousal predicts a reduction of choice biases irrespective of

direction (conservative or liberal).
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Figure 2. Phasic arousal reduces both conservative and liberal choice biases. (A) Auditory yes/no (forced choice)

tone-in-noise detection task. Schematic sequence of events during a trial. Subjects reported the presence or

absence of a faint signal (pure tone; green band) embedded in noise (see ’Materials and methods’). (B) A separate

batch of subjects performed the same task, but the signal now occurred in 30% of trials (‘rare’ condition) or in 70%

trials (‘frequent’ condition). (C) Overall sensitivity and bias in rare and frequent conditions. (D) Task-evoked pupil

response (solid line) and its derivative (dashed) in the equal (top), rare (middle) and frequent (bottom) signal

occurrence conditions. Gray window, interval for extracting task-evoked pupil response measures; black bar,

significant pupil derivative (p<0.05, cluster-corrected one-sample t-test). (E) Relationship between pupil response

and choice bias in the equal (top), rare (middle) and frequent (bottom) signal occurrence conditions. For the

biased signal occurrence conditions, we used three pupil-defined bins because there were fewer trials per

individual (less than 500) than in the previous data sets (more than 500; see ’Materials and methods’). (F) As

panel (E), but for mean RT and perceptual sensitivity. (D–F) Group average (N = 24; N = 15; N = 15); shading or

error bars = s.e.m. Solid lines show linear or quadratic fits to binned data (linear fits are shown where first-order fit

was superior to constant fit; quadratic fits are shown where second-order fit was superior to first-order fit). Blue

‘X’s, predictions from the ‘full’ drift diffusion model (see Figure 4 and associated text); p-values, mixed linear

modeling.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Additional analyses of data from auditory yes/no detection tasks.

de Gee et al. eLife 2020;9:e54014. DOI: https://doi.org/10.7554/eLife.54014 5 of 25

Research advance Neuroscience

https://doi.org/10.7554/eLife.54014


Phasic arousal tracks a reduction of biases in memory-based decisions
We next assessed whether the arousal-related bias suppression identified for perceptual decisions

generalizes to memory-based decisions. We characterized the interaction between pupil-linked pha-

sic arousal and choice behavior in a yes/no picture recognition task (Figure 3A; see ’Materials and

methods’; Bergt et al., 2018). Subjects (N = 54) were instructed to memorize 150 pictures (inten-

tional encoding) and to evaluate how emotional each picture was on a 4-point scale from 0 (‘neutral’)

to 3 (‘very negative’). Twenty-four hours after encoding, subjects saw all pictures that were pre-

sented on the first day and an equal number of novel pictures in randomized order, and indicated

for each item whether it had been presented before (‘yes – old’) or not (‘no – new’). Subjects’ overall

biases (irrespective of pupil response) varied from strongly liberal to strongly conservative across the

54 individuals (Figure 3C, x-axis and colors). Therefore, this data set also afforded an across-subjects

test of the direction-dependence (conservative vs liberal) of the pupil-linked arousal effect,

which was complementary to the within-subject test reported in the previous section.

Indeed, we observed a robust relationship between subjects’ overall choice bias, and the pupil-

linked shift in that bias: subjects with the strongest overall biases, whether liberal or conservative,

exhibited the strongest pupil-linked shift towards neutral bias (Figure 3C). Correspondingly, the

absolute value of the of the bias, measuring the magnitude of bias irrespective of sign, was signifi-

cantly reduced towards 0 in high-pupil bins (Figure 4D). In this experiment, pupil responses were

positively correlated with RT, but not with sensitivity (Figure 4E). In summary, phasic arousal is also

associated with a suppression of both liberal and conservative biases in memory-based decisions.

Pupil-linked bias reduction is associated with changes in the evidence
accumulation process
To gain deeper insight into the interaction of phasic pupil-linked arousal and the dynamics of the

decision process, we fitted bounded accumulation models of decision-making to the behavioral

measurements (choices and RTs; Figure 4A). We fitted several variants of a popular version of such

models, the drift diffusion model (Bogacz et al., 2006; Brody and Hanks, 2016; Gold and Shadlen,

2007; Ratcliff and McKoon, 2008). The diffusion model describes the perfect accumulation of noisy

sensory evidence in a single decision variable that drifts to one of two decision bounds (Figure 4A).

For all yes/no data sets, we quantified the effects of pupil-linked arousal on the following model
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Figure 3. Phasic arousal tracks a reduction of memory biases. (A) A yes/no (forced choice) picture recognition task. Schematic sequence of events

during a trial. Subjects judged whether they had seen pictures 24 h previously during an encoding task (see ’Materials and methods’). (B) Task-evoked

pupil response (solid line) and response derivative (dashed line). The gray window shows the interval for extracting task-evoked pupil response

measures; the black bars indicate a significant pupil derivative (p<0.05, cluster-corrected one-sample t-test). (C) Individual pupil-linked shift in choice

bias, plotted against individual’s overall choice bias. Data points are individual subjects. Correlation was assessed statistically by Pearson’s

correlation coefficient. Error bars represent 60% confidence intervals (bootstrap). (D) Relationship between magnitude of choice bias (absolute value)

and task-evoked pupil response. Difference was assessed using paired-samples t-test. (E) As panel (D), but for mean RT and perceptual sensitivity. In (B,

D,E), data are shown as group averages (N = 54); shading or error bars represent the s.e.m. Blue ‘X’s show predictions from the ‘full’ drift diffusion

model (see Figure 4 and associated text).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Additional analyses of data from yes/no picture recognition task.
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parameters (see ’Materials and methods’): 1) the starting point of the decision, 2) the mean drift

rate, 3) an evidence-independent bias in the drift (henceforth called ‘drift bias’), 4) boundary separa-

tion (controlling speed-accuracy tradeoff), and 5) non-decision time (the speed of pre-decisional evi-

dence encoding and post-decisional translation of choice into motor response). The diffusion model

accounted well for the overall behavior in each task (Figure 4—figure supplement 1A), with accu-

rate predictions of RT, sensitivity and bias (blue ‘X’ markers in Figures 1–3), and the expected

increase of drift rate with signal loudness (Figure 4—figure supplement 2C).

Within the diffusion model, a bias might be due to a shift in the starting point or to a bias in the

drift (alone or in combination with another model parameter, see below; Figure 4A). Starting point

and drift bias have dissociable effects on the shape of the RT distribution, which are evident in the

‘conditional response functions’ (Figure 4A, right; White and Poldrack, 2014). The conditional
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Figure 4. Phasic arousal tracks changes in evidence accumulation bias. (A) Schematic of drift diffusion model accounting for choices, and their

associated RTs. In the equation, v is the drift rate. Red and blue curves on the left show expected RT distributions under shifts in either the ‘starting

point’ (z; blue) or ‘drift bias’ model (vbias; red). Conditional response functions (right) were generated by dividing synthetic RT distributions

(see ’Materials and methods’) into five quantiles and computing the fraction of yes choices (upper boundary choices) in each quantile. (B) Individual

pupil-linked shift in starting point (blue) or drift bias (red), plotted against individual’s pupil-linked shift in choice bias. Data points are individual

subjects. Pearson’s correlation coefficients are shown. (C) Relationship between drift bias and task-evoked pupil response, separately for each data set

(left to right). In the picture recognition data set, drift bias estimates were sign-flipped for overall liberal subjects. Solid lines, linear or quadratic fits to

binned data (linear fits are shown where first-order fit was superior to constant fit; quadratic fits are shown where second-order fit was superior to first-

order fit; p-values were calculated using mixed linear modeling (predictors ‘loudness’ [signal loudness] and ‘pupil’ [pupil bin]), or paired-sample t-tests

for the picture recognition data set. Group average (N = 5, N = 20, N = 24, N = 15, N = 15 and N = 54, respectively); error bars represent s.e.m.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Drift diffusion model fit and comparisons.

Figure supplement 2. Remaining drift diffusion model parameters as function of pupil response bin.

Figure supplement 3. Empirical conditional response functions in the four yes/no data sets (left to right), separately for highest and lowest pupil bin.
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response functions of all yes/no data sets exhibited pupil-linked shifts across the full range of RTs

(Figure 4—figure supplement 3), a pattern more consistent with a shift in drift bias. More impor-

tantly, the individual pupil-linked changes in drift bias, but not in starting point, strongly correlated

with the corresponding changes in the overt behavioral biases (Figure 4B).

For the forced choice (yes/no) data sets, we allowed all of the model parameters listed above to

vary as a function of pupil response (see ’Materials and methods’). For the go/no-go task, the model

was not fully constrained because of the absence of RTs for no choices. This precluded us from fit-

ting both bias parameters (starting point or drift bias) as a function pupil response bin. Because

model comparisons favored pupil-dependent variation of drift bias over pupil-dependent starting

point (Figure 4—figure supplement 1B), we proceeded with the former version, estimating a single

starting point value irrespective of pupil bin.

We also formally compared the fit provided by the ‘full model’ described before to two alterna-

tive models: (i) the ‘starting point model’, with drift bias fixed across pupil bins and starting point

varying with pupil bins (otherwise identical to the full model); and (ii) the ‘drift bias model’, with

starting point fixed across pupil bins and drift bias varying with pupil bins (otherwise identical to

the full model). The starting point model provided a worse fit than the full model in three out of four

data sets (Figure 4—figure supplement 1B). The drift bias model provided a better fit than the full

model (and than the starting point model) in all four data sets (Figure 4—figure supplement 1B).

In line with the results described above, pupil responses predicted linear shifts in drift bias in all

data sets (Figure 4C), but not (consistently) in starting point (for yes/no data; Figure 4—figure sup-

plement 2A). In the go/no-go data sets from both species, starting point was biased towards no-go

(Figure 4—figure supplement 2A). Overcoming this conservative bias set by starting point required

shifting the drift bias towards the yes bound, which occurred in trials with rapid pupil dilation

(Figure 4C). The linear relationship between pupil responses and drift bias (Figure 4C) accurately

tracked the pupil-dependent reduction in overt conservative choice bias (blue ‘X’ markers in

Figures 1D and 2D). In summary, the pupil-linked behavioral effects in all of the data sets analyzed

here were consistent with a phasic arousal-dependent, selective reduction in the bias of the evidence

accumulation process that underlies the decisions assessed here.

Some accounts hold that arousal specifically enhances the representation of task-relevant varia-

bles (Aston-Jones and Cohen, 2005; Mather et al., 2016). In the tasks used here,

this scenario predicts increased sensitivity and/or reduced RT under high arousal. The pupil-linked

effects in d0 or RT in several of the data sets analyzed here (Figures 1–3) are inconsistent with this

prediction. Correspondingly, pupil dilation also exhibited no consistent (across data sets) association

with changes of drift rate (measure of sensitivity),

and no association with boundary separation

(measure of response caution) or non-decision

time (Figure 4—figure supplement 2B–D).

Our results imply that the build-up (drift) of

the decision variable varies dynamically across

trials, irrespective of the sensory evidence but as

a function of phasic arousal. The resulting vari-

ability in the drift would appear to be random

when ignoring phasic arousal. Such random vari-

ability in drift is captured by the drift rate vari-

ability parameter of the diffusion model

(Bogacz et al., 2006; Ratcliff and McKoon,

2008). We solidified this intuition by simulating

RT distributions from two conditions that dif-

fered with regard to drift bias (Figure 5;

see ’Materials and methods’), just like trials with

high vs low phasic arousal responses in our

experiments. When we allowed drift bias to vary

with condition (as we did in our pupil-dependent

model fits above), we were actually

able to recover the true drift rate variability of

the generative process (Figure 5A). But when
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we forced the drift bias to be the same for both conditions, drift rate variability was overestimated

(Figure 5A). This additional (‘apparent’) component of drift rate variability increased monotonically

with the disparity of drift biases between both conditions (Figure 5B).

Thus, a significant fraction of choice variability does not originate from noise within the evidence

accumulation machinery itself, but rather from dynamic, arousal-linked variations in evidence accu-

mulation bias. This insight should be incorporated into recent accounts that attribute trial-by-trial

choice variability to evidence accumulation noise rather than to biases, under the assumption of con-

stant biases (Drugowitsch et al., 2016). Note that we are agnostic about the source of trial-by-trial

variations in phasic arousal, which was not under experimental control in the present study (but see

Colizoli et al., 2018; Nassar et al., 2012; Urai et al., 2017).

Changes in urgency are unlikely to mediate the pupil-linked reduction
of choice bias
In the previous section, we assumed that the decision bounds remained constant during decision for-

mation (Ratcliff and McKoon, 2008). In reality, decision bounds may often collapse over time

(Churchland et al., 2008; Murphy et al., 2016; Urai et al., 2019). This implements a form of ‘deci-

sion urgency’ signal (Cisek et al., 2009), as less total evidence is required to cross threshold after a

long interval of decision processing than at the start of the decision process, preventing decision

deadlock. Pupil-linked phasic arousal might also control the dynamics of decision urgency

(Murphy et al., 2016). In a final model approach, we assessed whether a pupil-dependent variation

of collapsing bounds (urgency), when combined with pupil-independent starting point or drift bias,

could account for the pupil-dependent changes in behavioral bias reported in Figures 1–3. Converg-

ing results from model simulations and fits deem this scenario unlikely (Figure 6, Figure 6—figure

supplement 1).

Simulations of models equipped with different biasing mechanisms (varying starting point or drift

bias without urgency; or with fixed starting point/drift bias combined with varying urgency) showed

that only changes in drift bias were qualitatively in line with the empirical data, in that they changed

choice biases without producing large concomitant changes in accuracy or RT (data not shown).

We then fitted the yes/no data sets to three alternative models, each with the same number of

parameters (Figure 6A and ’Materials and methods’): (i) the starting point model, with starting point

varying with pupil bin and one overall drift bias (no urgency); (ii) the drift bias model, with one overall

starting point bias, and drift bias varying with pupil bin (no urgency); and (iii) the urgency model,

with one overall starting point bias, and no drift bias (urgency varying with pupil bin). (A fixed drift

bias combined with varying urgency was not considered here because our simulations showed that

this could not produce any biases of the observed magnitudes.) In each model, we fitted boundary

separation, drift rate and non-decision time irrespective of pupil bin. For formal model comparison

of these models, see Figure 6—figure supplement 1A). Finally, we simulated data on the basis of

the fitted parameters of the above starting point, drift bias and urgency models, and assessed the

corresponding variations in overt choice biases as a function of pupil response bin. The model with

collapsing bounds produced only negligible pupil-linked variations in choice bias (Figure 6B), con-

trary to what we observed in all data sets (Figures 1–3). We then compared the differences between

the choice biases predicted by each model and the empirically measured choice biases, referred to

as ‘residuals’ for simplicity. In each data set, the residuals of the urgency model were significantly

larger than those of both the starting point and drift bias models (Figure 6C). In each data set, the

residuals of the drift bias model were smallest (Figure 6C), indicating that this model best captured

the pupil-dependent variation in overt choice bias. Taken together, all of our modeling efforts con-

verged on the conclusion that changes in drift bias, but in neither starting point nor decision urgency

(combined with a pre-existing starting point bias), implement the pupil-linked shifts in choice bias.

Suppression of bias by phasic arousal is distinct from ongoing slow
state fluctuations
One concern is that the bias suppression related to phasic arousal reported here might be ‘inherited’

through a previously observed negative correlation between phasic pupil responses and pre-trial

baseline pupil diameter (de Gee et al., 2014; Gilzenrat et al., 2010; Mridha et al., 2019). This is

probably due to a combination of a true negative correlation between baseline and evoked arousal,
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and a general tendency of pupil size to revert to the mean (Mridha et al., 2019). Pre-trial baseline

pupil size might vary from trial to trial because it tracks slow (ongoing) arousal fluctuations and/or is

contaminated by pre-trial spill-over effects (e.g., uncertainty [high/low], response [yes/no], and pupil

response magnitude).

A dependence on baseline pupil could not account for the results reported here, for four reasons.

First, there was a non-monotonic association between baseline pupil diameter and decision bias in

mice (McGinley et al., 2015a), in contrast to the monotonic pattern that we observed here for pha-

sic arousal in the same data set (Figure 1D). Second, pupil responses exhibited a negligible (go/no-

go data sets) or weak (yes/no data sets) correlation with the preceding baseline diameter (Figure 1—

figure supplement 1H, Figure 2—figure supplement 1D and Figure 3—figure supplement 1C); in

all cases, these correlations are substantially smaller than those for conventional baseline-corrected

pupil response amplitudes (de Gee et al., 2014; Gilzenrat et al., 2010). Third, in three out of four

data sets with a weak anticorrelation between pupil response and baseline pupil size, there was no

consistent linear association between baseline pupil diameter and choice bias (yes/no equal,

p=0.002; yes/no rare, p=0.265; yes/no frequent, p=0.157; yes/no recognition, p=0.592;

using the same mixed-linear modeling approach as in Figures 1–3). In summary, the reduction in

choice bias linked to pupil responses reported here reflects genuine correlates of phasic arousal,

and not of the slowly varying, baseline arousal state.

Discussion
Arousal is traditionally thought to upregulate the efficiency of information processing globally (e.g.,

the quality of evidence encoding or the efficiency of accumulation [Aston-Jones and Cohen, 2005;
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Figure 6. Phasic arousal reduces overt choice bias by reducing a bias in evidence accumulation. (A) Schematic of three alternative models. (B)

Relationship between choice bias and task-evoked pupil response, separately for each yes/no data set (left to right). ‘X’ symbols are predictions from

the three alternative models in panel (A) (see ’Materials and methods’). (C) Residuals between empirical data and model predictions (see ’Materials and

methods’). Statistical difference was assessed by paired-sample t-tests. In panels (B) and (C), data are group averages (N = 24, N = 15, N = 15 and

N = 54); error bars are s.e.m.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Comparison between fits of models with or without varying urgency.
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Mather et al., 2016; McGinley et al., 2015b]). However, recent work indicates that phasic arousal

signals might have distinct effects, such as reducing the impact of prior expectations and biases on

decision formation (de Gee et al., 2014; de Gee et al., 2017; Krishnamurthy et al., 2017;

Nassar et al., 2012; Urai et al., 2017). Our results are in consistent with the idea that phasic arousal

suppresses biases in the accumulation of evidence leading up to a choice, a function that generalizes

across species (humans and mice) and domains of decision-making (from perceptual to memory-

based).

We observed pupil-linked bias-reduction in human and mouse choice behavior during analogous

auditory tone-detection tasks. Task-evoked pupil responses occurred early during decision forma-

tion, even in trials without a motor response, and tracked a suppression of conservative choice bias.

Behavioral modeling indicated that the bias reduction was due to a selective interaction with the

accumulation of information from the noisy sensory evidence. We further showed that phasic arousal

tracks a reduction of accumulation biases, whether conservative or liberal, as seen in the conditions

with different stimulus presentation statistics. Finally, we showed, under the assumption that mne-

monic decisions are based on samples from memory, that pupil-linked suppression of evidence accu-

mulation bias also occurs for memory-based decisions. We conclude that the ongoing deliberation,

culminating in a choice (Shadlen and Kiani, 2013), interacts in a canonical way with transient boosts

in the global arousal state of the brain: more phasic arousal tracks reduced evidence accumulation

bias.

We here used pupil responses as a peripheral readout of changes in cortical arousal state

(Joshi and Gold, 2020; Larsen and Waters, 2018; McGinley et al., 2015b). Indeed, recent work

has shown that pupil diameter closely tracks several established measures of cortical arousal state

(Larsen and Waters, 2018; McGinley et al., 2015a; McGinley et al., 2015b; Reimer et al., 2014;

Vinck et al., 2015). Changes in pupil diameter have been associated with locus coeruleus (LC) activ-

ity in humans (de Gee et al., 2017; Murphy et al., 2014), monkeys (Joshi et al., 2016;

Varazzani et al., 2015), and mice (Breton-Provencher and Sur, 2019; Liu et al., 2017;

Reimer et al., 2016). However, some (of these) studies also found unique contributions to pupil size

in other subcortical regions, such as the cholinergic basal forebrain and dopaminergic midbrain, and

the superior and inferior colliculi (de Gee et al., 2017; Joshi et al., 2016; Mridha et al., 2019;

Reimer et al., 2016). Thus, the exact neuroanatomical and neurochemical source(s) of our observed

effects of phasic arousal on decision-making remain to be determined.

There is mounting evidence for an arousal-linked reduction of biases and/or prior beliefs in

humans, and our current findings generalize this emerging principle to rodents (mice) as well as to a

higher-level form of decision-making that is based on information retrieved from memory. Previous

work has shown a suppression of evidence accumulation bias similar to that which we found here

during challenging visual perceptual choice tasks (contrast detection and random dot motion dis-

crimination) (de Gee et al., 2017). Similarly, during sound localization in a dynamic environment,

phasic arousal tracks a reduced influence of prior expectations on perception (Krishnamurthy et al.,

2017). Furthermore, suppressive effects of phasic arousal also apply to choice history biases that

evolve across trials. In this case, phasic arousal reflects perceptual decision uncertainty in the current

trial and a reduction of choice repetition bias in the next trial (Urai et al., 2017). One study reported

that phasic arousal tracked an overall reduction of reaction time during random dot motion discrimi-

nation (van Kempen et al., 2019). However, in this study, the signal strength was so high that the

task could be solved without the temporal accumulation of evidence: reaction times were overall

short (median <600 ms) and performance was close to ceiling. Thus, the arousal-dependent bias sup-

pression seems to be a principle that generalizes across species, directions of bias, and domains of

decision-making.

Some studies found a relationship between pupil responses and attention (Binda et al., 2013;

Ebitz and Moore, 2017; Naber et al., 2013). In our tasks, this would predict a relationship between

pupil-linked arousal and participants’ sensitivity, RT or drift rate. But pupil responses were not sys-

tematically associated either of these measures (Figures 1–3 and Figure 4—figure supplement 2C).

A possible explanation for this discrepancy is that the studies discussed above focused on visual

stimulus-evoked pupil responses, whereas we focused on the non-luminance-mediated, arousal-

related pupil responses (Joshi and Gold, 2020; Larsen and Waters, 2018; McGinley et al., 2015b).

The use of the drift diffusion model in the current study was based on four main assumptions.

First, in the go/no-go task, we assume that participants accumulated the auditory evidence within
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each trial (discrete noise token) during a mini block and reset this accumulation process before the

next discrete sound. Second, in both the go/no-go and yes/no tasks, we assume that subjects

actively accumulated evidence towards both yes and no choices, which is supported by neurophysio-

logical data from yes/no tasks (Deco et al., 2007; Donner et al., 2009). Third, in the go/no-go task,

we assume that subjects set an implicit boundary for no choices (Ratcliff et al., 2018). Fourth, in the

picture recognition task, we assume that memory-based decisions follow the same sequential sample

principle established for perceptual decisions, whereby the ‘samples’ that are accumulated into the

decision variable are drawn from memory (Bowen et al., 2016; Ratcliff, 1978; Shadlen and Shoh-

amy, 2016). Although the quality of our model fits suggest that the model successfully accounted

for the measured behavior, lending support to the validity of these assumptions, further work is

needed to establish the evidence accumulation principle across decision tasks. This holds in particu-

lar for the memory-based decisions, where the hypothetical evidence ‘samples’ can neither be

directly controlled nor observed.

The monotonic effects of ‘phasic’ arousal on the decision biases that we report here contrast with

the observed effects of ‘tonic’ (pre-stimulus) arousal, which has a non-monotonic (inverted U) effect

on behavior (perceptual sensitivity and bias) and neural activity (the signal-to-noise ratio of thalamic

and cortical sensory responses) (Gelbard-Sagiv et al., 2018; McGinley et al., 2015a). Our study

allows a direct comparison of tonic and phasic arousal effects within the same data set in mice. A

previous report on that data set showed that the mice’s behavioral performance was most rapid and

accurate, and the least biased, at intermediate levels of ‘tonic’ arousal (medium baseline pupil size)

(McGinley et al., 2015a). By contrast, we show here that the behavioral performance of the mice

was linearly related to phasic arousal, with the most rapid and accurate and the least biased choices

being associated with the most rapid phasic arousal responses. It is tempting to speculate that these

differences result from different neuromodulatory systems governing tonic and phasic arousal.

Indeed, rapid dilations of the pupil (phasic arousal) are more tightly associated with phasic activity in

noradrenergic axons, whereas slow changes in pupil (tonic arousal) are accompanied by sustained

activity in cholinergic axons (Reimer et al., 2016). Future physiological work should dissect the role

of phasic and tonic neuromodulatory signals in decision-making computations in the brain.

Recent findings indicate that intrinsic behavioral variability is increased during sustained (‘tonic’)

elevation of noradrenaline (NA) levels, in line with the ‘adaptive gain theory’ (Aston-Jones and

Cohen, 2005). First, optical stimulation of LC inputs to anterior cingulate cortex caused rats to aban-

don strategic counter prediction in favor of stochastic choice in a competitive game (Tervo et al.,

2014). Second, chemogenetic stimulation of the LC in rats performing a patch-leaving task increased

decision noise and subsequent exploration (Kane et al., 2017). Third, pharmacologically reducing

central NA levels in monkeys performing an operant effort exertion task parametrically increased

choice consistency (Jahn et al., 2018). Finally, pharmacologically increasing central tonic NA levels

in human subjects boosted the rate of alternations in a bistable visual input and long-range correla-

tions in brain activity (Pfeffer et al., 2018). In the drift diffusion model, increased within-trial decision

noise manifested as a decrease of the mean drift rate (quantifying the signal-to-noise ratio of deci-

sion evidence), which was not consistently evident in the present data. This is another indication,

together with the baseline pupil effects reported by McGinley et al., 2015a, that the effects of pha-

sic and tonic neuromodulation are distinct.

One influential account holds that phasic LC responses during decision-making are triggered by

the threshold crossing in some circuit accumulating evidence, and that the resulting NA release then

facilitates the translation of the choice into a motor act (Aston-Jones and Cohen, 2005). Within the

drift diffusion model, this predicts a reduction in non-decision time and no effect on evidence accu-

mulation. In contrast to this prediction, we found in all our datasets that phasic arousal affected evi-

dence accumulation (suppressing biases therein), but not non-decision time. Our approach does not

enable us to rule out an effect of phasic arousal on movement execution (i.e., kinematics). Yet, our

results clearly establish an important role of phasic arousal in evidence accumulation, ruling out any

purely post-decisional account. This implies that phasic LC responses driving pupil dilation are

already recruited during evidence accumulation, or that the effect of pupil-linked arousal on evi-

dence accumulation are governed by systems other than the LC. Future experiments characterizing

phasic activity in the LC or in other brainstem nuclei that are involved in arousal during protracted

evidence accumulation tasks could shed light on this issue.
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Anatomical evidence supports the speculation that task-evoked neuromodulatory responses and

cortical decision circuits interact in a recurrent fashion. One possibility is that neuromodulatory

responses alter the balance between ‘bottom-up’ and ‘top-down’ signaling across the cortical hierar-

chy (Friston, 2010; Hasselmo, 2006; Hsieh et al., 2000; Kimura et al., 1999; Kobayashi et al.,

2000). Sensory cortical regions encode likelihood signals and send these (bottom-up) to association

cortex; participants’ prior beliefs (about target probability, for example) are sent back (top-down) to

the lower levels of the hierarchy (Beck et al., 2012; Pouget et al., 2013). Neuromodulators might

reduce the weight of this prior data in the inference process (Friston, 2010; Moran et al., 2013),

thereby reducing choice biases. Another possibility is neuromodulator release might scale with

uncertainty about the incoming sensory data (Friston, 2010; Moran et al., 2013). Such a process

could be implemented as top-down control by the cortical systems that are involved in decision-

making over neuromodulatory brainstem centers. This line of reasoning is consistent with anatomical

connectivity (Aston-Jones and Cohen, 2005; Sara, 2009). Finally, a related conceptual model that

has been proposed for phasic LC responses is that cortical regions driving the LC (e.g. ACC) continu-

ously compute the ratio of the posterior probability of the state of the world to its (estimated) prior

probability (Dayan and Yu, 2006). LC is then activated when neural activity ramps towards the non-

default choice (against ones’ bias). The resulting LC activity might reset its cortical target circuits

(Bouret and Sara, 2005) and override the default state (Dayan and Yu, 2006), facilitating the transi-

tion of the cortical decision circuitry towards the non-default state. These scenarios are in line with

recent insights that (LC-mediated) pupil-linked phasic arousal shapes brain-wide connectivity

(Shine, 2019; Stitt et al., 2018; Zerbi et al., 2019).

Our study showcases the value of comparative experiments in humans and non-human species.

One would expect the basic functions of arousal systems (e.g. the LC-NA system) to be analogous in

humans and rodents. Yet, it has been unclear whether these systems are recruited in the same way

during decision-making. Computational variables such as decision uncertainty or surprise are

encoded in prefrontal cortical regions (e.g. anterior cingulate or orbitofrontal cortex; Kepecs et al.,

2008; Ma and Jazayeri, 2014; Pouget et al., 2016) and conveyed to brainstem arousal systems via

top-down projections (Aston-Jones and Cohen, 2005; Breton-Provencher and Sur, 2019). Both

the cortical representations of computational variables and the top-down projections to brainstem

may differ between species. More importantly, it has not been known whether key components of

the decision formation process, in particular evidence accumulation, would be affected by arousal

signals in the same way in different species. Only recently has it been established that rodents (rats)

and humans accumulate perceptual evidence in an analogous fashion (Brunton et al., 2013). Our

results indicate that the shaping of evidence accumulation by phasic arousal is also governed by a

principle that is conserved across species.

Materials and methods

Subjects
All procedures concerning the animal experiments were carried out in accordance with Yale Univer-

sity Institutional Animal Care and Use Committee, and are described in detail elsewhere

(McGinley et al., 2015a). Human subjects were recruited and participated in the experiment in

accordance with the ethics committee of the Department of Psychology at the University of Amster-

dam (go/no-go and yes/no task), the ethics committee of Baylor College of Medicine (yes/no task

with biased signal probabilities) or the ethics committee of the University of Hamburg (picture recog-

nition task). Human subjects gave written informed consent and received credit points (go/no-go

and yes/no tasks) or a performance-dependent monetary remuneration (yes/no task with biased sig-

nal probabilities and picture recognition task) for their participation. We analyzed two previously

unpublished human data sets, and re-analyzed a previously published mice data set

(McGinley et al., 2015a) and two human data sets (Bergt et al., 2018; de Gee et al., 2017).

Bergt et al., 2018 have analyzed pupil responses only during the encoding phase of the picture rec-

ognition memory experiment; we here present the first analyses of pupil responses during the recog-

nition phase.

The sample sizes (and trial numbers per individual) for the newly collected human data sets were

determined on the basis of the effects observed in a previous study comparing diffusion model
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parameters between pupil conditions, with N = 14 (de Gee et al., 2017). The previously published

mouse data set (McGinley et al., 2015a) consisted of data from five mice. Please note that the small

number of mice was compensated by a substantial number of trials per individual, which is ideal for

the detailed behavioral modeling we pursued here. We selected the data set by Bergt et al., 2018

for across-subject correlations of variables of interest (Figure 3). This data set had a sufficient sample

size for such an analysis, as determined on the basis of the effect size obtained in a previous study

(de Gee et al., 2014).

Five mice (all males; age range, 2–4 months) and 20 human subjects (15 females; age range, 19–

28 y) performed the go/no-go task. Twenty-four human subjects (of which 18 had already partici-

pated in the go/no-go task; 20 females; age range, 19–28 y) performed an additional yes/no task.

Fifteen human subjects (eight females; age range, 20–28 y) performed the yes/no task with biased

signal probabilities. Fifty-four human subjects (27 females; age range, 18–35 y) performed a picture

recognition task, of which two were excluded from the analyses because of eye-tracking failure.

For the go/no-go task, mice performed between five and seven sessions (described in

McGinley et al., 2015a), yielding a total of 2469–3479 trials per subject. For the go/no-go task,

human participants performed 11 blocks of 60 trials each (distributed over two measurement ses-

sions), yielding a total of 660 trials per participant. For the yes/no task, human participants per-

formed between 11 and 13 blocks of 120 trials each (distributed over two measurement sessions),

yielding a total of 1320–1560 trials per participant. For the yes/no task with biased signal probabili-

ties, human subjects performed eight blocks of 120 trials each (distributed over two measurement

sessions), yielding a total of 960 trials per participant. For the picture recognition task, human sub-

jects performed 300 trials.

Behavioral tasks
Perceptual go/no-go auditory tone-in-noise detection task
Each mini block consisted of two to seven consecutive trials. Each trial was a distinct auditory noise

stimulus of 1 s duration, and the inter-trial interval was 0.5 s. A weak signal tone was added to the

last trial in the mini block (Figure 1A). The number of trials, and thus the signal position in the

sequence, was randomly drawn beforehand. The probability of a target signal decreased linearly

with trial number (Figure 1—figure supplement 1A, left). Each mini block was terminated by the

subject’s go response (hit or false alarm) or after a no-go error (miss). Each trial consisted of an audi-

tory noise stimulus, or a pure tone added to one of the noise stimuli (cosine-gated 2 kHz for humans;

new tone frequency each session for mice to avoid cortical reorganization across the weeks of train-

ing [McGinley et al., 2015a]). Noise stimuli were temporally orthogonal ripple combinations, which

have spectro-temporal content that is highly dynamic, thus requiring temporal integration of the

acoustic information in order to detect the stable signal tones (McGinley et al., 2015a). In the

mouse experiments, auditory stimuli were presented at an overall intensity of 55 dB (root-mean-

square [RMS] for each 1 s trial). In the human experiments, auditory stimuli were presented at an

intensity of 65 dB using an IMG Stageline MD-5000DR over-ear headphone.

Mice learned to respond during the signal-plus-noise trials and to withhold responses during

noise trials across training sessions. Mice responded by licking for sugar water reward. Human par-

ticipants were instructed to press a button with their right index finger. Correct yes choices (hits)

were followed by positive feedback: 4 mL of sugar water in the mice experiment, and a green fixation

dot in the human experiment. In both mice and humans, false alarms were followed by an 8 s time-

out. Humans, but not mice, also received an 8 s timeout after misses. This design difference was

introduced to compensate for differences in general response bias between species

that was evident in pilot experiments: mice tended to lick too frequently without a selective penalty

for false alarms (i.e. liberal bias), whereas human participants exhibited a generally conservative

intrinsic bias with balanced penalties for false alarms and correct rejects. Selectively penalizing false

alarms would have aggravated this conservative tendency in humans, hence undermining the cross-

species comparison of behavior.

The signal loudness was varied from trial to trial (�30 dB to 0 dB with respect to RMS noise in

mice; �40 dB to –5 dB with respect to RMS noise in humans), while the 1-second mean RMS loud-

ness of the noise was held constant. For the trial containing a signal tone within each mini block, sig-

nal loudness was selected randomly under the constraint that each of six (mice) or five (humans)
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levels would occur equally often within each session (mice) or block of 60 mini blocks (humans). The

corresponding signal loudness exhibited a robust effect on mean accuracy, with the highest accuracy

for the loudest signal level: F(5,20) = 23.95 (p<0.001) and F(4,76) = 340.9 (p<0.001), for mouse and

human subjects, respectively. Human hit rates were almost at ceiling level for the loudest signal

(94.7% ± 0.69% s.e.m.), and close to ceiling for the second loudest signal (92.8% ± 0.35% s.e.m.).

Because so few errors are not enough to constrain the drift diffusion model sufficiently, we merged

the two conditions with the loudest signals.

Perceptual yes/no (forced choice) auditory tone-in-noise detection task
Each trial consisted of two consecutive intervals (Figure 2A): (i) the baseline interval (3–4 s uniformly

distributed); and (ii) the decision interval, the start of which was signaled by the onset of the auditory

stimulus and which was terminated by the subject’s response (or after a maximum duration of 2.5 s).

The decision interval consisted of only an auditory noise stimulus (McGinley et al., 2015a), or a pure

tone (2 kHz) superimposed onto the noise. In the first experiment, the signal was presented in 50%

of trials. Auditory stimuli were presented at the same intensity of 65 dB using the same over-ear

headphone as in the go/no-go task. In the second experiment, in order to manipulate perceptual

choice bias experimentally, the signal was presented in either 30% of trials (‘rare’ blocks) or 70% of

trials (‘frequent’ blocks) (Figure 2B). Auditory stimuli were presented at approximately the same sig-

nal loudness (65 dB) using a Sennheiser HD 660 s over-ear headphone, suppressing ambient noise.

Participants were instructed to report the presence or absence of the signal by pressing one of

two response buttons with their left or right index finger, once they felt sufficiently certain (free

response paradigm). The mapping between perceptual choice and button press (e.g., ‘yes’ ! right

key; ‘no’ ! left key) was counterbalanced across participants. After every 40 trials, subjects were

informed about their performance. In the second experiment, subjects were explicitly informed

about signal probability. The order of signal probability (e.g., first 480 trials ! 30%; last 480 trials

! 70%) was counterbalanced across subjects.

Throughout the experiment, the target signal loudness was fixed at a level that yielded about

75% correct choices in the 50% signal probability condition. Each participant’s individual signal,

loudness was determined before the main experiment using an adaptive staircase procedure

(Quest). For this, we used a two-interval forced choice variant of the tone-in-noise detection yes/no

task (one interval, signal-plus-noise; the other, noise), in order to minimize contamination of the stair-

case by individual bias (generally smaller in two-interval forced choice than in yes/no tasks). In the

first experiment, the resulting threshold signal loudness produced a mean accuracy of 74.14% cor-

rect (±0.75% s.e.m.). In the second experiment, the resulting threshold signal loudness produced a

mean accuracy of 84.40% correct (±1.75% s.e.m.) and 83.37% correct (±1.36% s.e.m.) in the rare and

frequent conditions, respectively. This increased accuracy was expected given the subjects’ ability to

incorporate prior knowledge about signal probability into their decision-making.

Memory-based (forced choice) yes/no picture recognition decision task
The full experiment consisted of a picture and word encoding task, and a 24 hr-delayed free recall

and recognition test (Figure 3A) previously described in Bergt et al., 2018 (data available at

https://figshare.com/articles/Reading_memory_formation_from_the_eyes/11432118). Here, we did

not analyze data from the word recognition task because of a modality mismatch: auditory during

encoding, visual during recognition. During encoding, 75 neutral and 75 negative grayscale pictures

(modified to have the same average luminance) were randomly chosen from the picture pool

(Bergt et al., 2018) and presented in randomized order for 3 s at the center of the screen, against a

gray background that was equiluminant to the pictures. Subjects were instructed to memorize the

pictures (intentional encoding) and to evaluate how emotional each picture was on a 4-point scale

from 0 (‘neutral’) to 3 (‘very negative’). During recognition, 24 hr post encoding, subjects saw all

of the pictures that were presented on the first day and an equal number of novel neutral and nega-

tive items in randomized order. Subjects were instructed to indicate for each item whether it had

been presented the previous day (‘yes – old’) or not (‘no – new’). For items that were identified as

‘old’, participants were further asked to rate on a scale from 1 (‘not certain’) to 4 (‘very certain’) how

confident they were that the item was indeed ‘old’.
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Data acquisition
The mouse pupil data acquisition is described elsewhere (McGinley et al., 2015a). The human

experiments were conducted in a psychophysics laboratory (go/no-go and yes/no tasks). The left

eye’s pupil was tracked at 1000 Hz with an average spatial resolution of 15 to 30 min arc, using an

EyeLink 1000 Long Range Mount (SR Research, Osgoode, Ontario, Canada), and it was calibrated

once at the start of each block.

Analysis of task-evoked pupil responses
Preprocessing
Periods of blinks and saccades were detected using the manufacturer’s standard algorithms with

default settings. The remaining data analyses were performed using custom-made Python scripts.

We applied to each pupil timeseries: (i) linear interpolation of missing data due to blinks or other

reasons (interpolation time window, from 150 ms before until 150 ms after missing data), (ii) low-

pass filtering (third-order Butterworth, cut-off: 6 Hz), (iii) for human pupil data, removal of pupil

responses to blinks and to saccades, by first estimating these responses by means of deconvolution

and then removing them from the pupil time series by means of multiple linear regression

(Knapen et al., 2016), (iv) conversion to units of modulation (percent signal change) around the

mean of the pupil time series from each measurement session, and (v) down-sampling to 50 Hz. We

computed the first time derivative of the pupil size, by subtracting the size from adjacent frames,

and low-pass filtered the result (third-order Butterworth, cut-off: 2 Hz).

Quantification of task-evoked pupil responses
In our previous work, which we aimed to extend here, we computed pupil responses aligned to sub-

jects’ behavioral choice (rather than stimulus onset), which was motivated by both theoretical consid-

erations and empirical observations (de Gee et al., 2014; de Gee et al., 2017). All yes/no tasks

(detection and recognition) were analogous in structure to the tasks from those previous studies.

Thus, for those tasks, we here again computed task-evoked pupil responses time-locked to the

behavioral choice (button press). Specifically, we computed pupil responses as the 95th percentile of

the pupil derivative time series (Reimer et al., 2016) in the 500 ms before button press (gray win-

dows in Figure 2D and 3B). The resulting pupil bins were associated with different overall pupil

response amplitudes (with regard to pre-trial baseline pupil size) across the whole duration of the

trial (Figure 2—figure supplement 1C and Figure 3—figure supplement 1B).

The auditory go/no-go task entailed several deviations from the above task structure that

required a different quantification of task-evoked pupil responses. The go/no task had, by design,

an imbalance of motor responses between trials ending with different decisions, with no motor

response for (implicit) no choices. Thus, no response-locking was possible for no-decisions, forcing

us to deviate from our standard, choice-locked analysis approach, and to use stimulus-

locking instead. Because decision times were substantially shorter in the go-/no-go tasks than in all

the yes/no tasks (compare Figure 1—figure supplement 1C with Figure 2—figure supplement 1B

and Figure 3—figure supplement 1A), behavioral correlates of pupil dilation should be less depen-

dent on whether the pupil responses are aligned to stimulus onset or choice in the former.

In the go/no-go task, a transient drive of pupil dilation by the motor response (lick or button

press) would yield larger (and potentially more rapid) pupil responses for go choices (motor move-

ment) than for implicit no-go choices (no motor movement), even without any link between phasic

arousal and decision bias. We took two approaches to minimize contamination by this motor imbal-

ance. First, we quantified the single-trial response rate as the 95th percentile of the pupil derivative

in an early window, ranging from the start of the period when the trial-average pupil derivative time

course was significantly different from zero up to the first peak (gray windows in Figure 1C). For the

mice, this window ranged from 40 to 230 ms after trial onset; for humans, this window ranged from

230 to 500 ms after trial onset. Second, we excluded decision intervals with a motor response before

the end of this window plus a 50 ms buffer (cutoff 280 ms for mice, 550 ms for humans; Figure 1—

figure supplement 1C). In both species, the resulting pupil-derivate-defined bins were associated

with different overall pupil response amplitudes across the whole duration of the trial (Figure 1—fig-

ure supplement 1G).
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Re-analyzing all yes/no data by time-locking the pupil responses to the stimulus onsets yielded

pupil response time courses that were similar overall to the choice-aligned ones shown in the paper

(Figure R1A). Yet, stimulus-locking did not yield a consistent relationship to any behavioral measure

(RT, sensitivity/d0, or bias/criterion; Figure R1B-D), corroborating our use of choice-aligned pupil

responses for inferring the role of phasic arousal signals in decision-making and evidence

accumulation.

For analyses of the go/no-go task and the yes/no task with equal probability of signal occurrence,

we used five equally populated bins of task-evoked pupil responses. As sensitivity increased with

tone loudness (Figure 1—figure supplement 1D), there were more go-trials for louder tones (mean

number of go-trials across subjects from least to most loud tones): 68, 73, 97, 122, 136 and 166 go-

trials for mice and 45, 69, 89 and215 go-trials for human subjects. To ensure an equal number of

tones of each loudness in each pupil bin, we binned trials by pupil response within a given loudness

condition. We used three bins for the yes/no task with biased environments, because subjects per-

formed substantially fewer trials (see ’Subjects’). We used two bins for the picture recognition task,

so that we could perform the individual difference analysis reported in Figure 3. In the picture rec-

ognition task, we ensured that each pupil bin contained an equal number of neutral and emotional

stimuli. In all cases, the results are qualitatively the same when using five equally populated bins of

task-evoked pupil responses.

Analysis and modeling of choice behavior
In the go/no-go task, the first trial of each mini block (see ’Behavioral tasks’) was excluded from the

analyses, because this trial served as a mini block start cue, and never included the signal (pure sine

wave). In the go/no-go and yes/no tasks, reaction time (RT) was defined as the time from stimulus

onset until the lick or button press. In the mice go/no-go data set, trials with RTs shorter than 280

ms were excluded from the analyses (see ’Quantification of task-evoked pupillary responses’ and

Figure 1—figure supplement 1C); in all human data sets, trials with RTs shorter than 550 ms were

excluded from the analyses (Figure 1—figure supplement 1C, Figure 2—figure supplement 1B

and Figure 3—figure supplement 1A).

Signal-detection theoretic modeling (go/no-go and yes/no tasks)
The signal detection theoretic (SDT) metrics sensitivity (d0) and criterion (c) (Green and Swets, 1966)

were computed separately for each of the bins of pupil response size. We estimated sensitivity as

the difference between z-scores of hit rates and false-alarm rates. We estimated criterion by averag-

ing the z-scores of hit rates and false-alarm rates and multiplying the result by �1.

In the go/no-go task, subjects could set only one decision criterion (not to be confused with

the above-defined c), against which to compare sensory evidence so as to determine choice. This is

because signal loudness was drawn pseudo-randomly for each trial and participants had no way of

using separate criteria for different signal strengths. We reconstructed this overall decision criterion

(irrespective of signal loudness) and used this as a measure of the overall choice bias, whose depen-

dence on pupil response we then assessed (Figure 1D). To this end, we used the following approach

derived from SDT (Green and Swets, 1966). We computed one false alarm rate (based on the noise

trials) and multiple hit rates (one per signal loudness). Based on these, we modeled one overall noise

distribution (normally distributed with mean = 0, sigma = 1), and one ‘composite’ signal distribution

(Figure 1—figure supplement 1B), which was computed as the average across a number of signal

distributions separately modeled for each signal loudness (each normally distributed with

mean = empirical d0 for that signal loudness, and sigma = 1).

We defined the ‘zero-bias point’ (Z) as the value for which the noise and composite signal distri-

butions crossed:

S Zð Þ�N Zð Þ ¼ 0 (1)

where S and N are the composite signal and noise distributions, respectively.

The subject’s empirical ‘choice point’ (C) was computed as:

C¼ 0:5 � d
0

i

� �

þ ci (2)
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where di and ci were a subject’s SDT-sensitivity and SDT-criterion for a given signal loudness, ‘i’.

Note that C is the same constant when sensitivity and criterion are computed for each signal loud-

ness based on the same false alarm rate. Therefore, it does not matter which signal loudness is used

to compute the empirical choice point.

Finally, the overall bias measure was then taken as the distance between the subject’s choice

point and the zero-bias point:

Overall bias¼C�Z (3)

Drift diffusion modeling
Data from all tasks were fit with the drift diffusion model, which well captured all of the features of

behavior that we assessed. We used the HDDM 0.7.5 package (Wiecki et al., 2013) to fit behavioral

data from the yes/no and go/no-go tasks. In all datasets, we allowed the following parameters to

vary with pupil response-bins: (i) the separation between both bounds (i.e. response caution); (ii) the

mean drift rate across trials; (iii) drift bias (an evidence independent constant added to the drift);

and (iv) the non-decision time (sum of the latencies for sensory encoding and motor execution of the

choice). In the datasets using yes/no protocols, we additionally allowed starting point to vary with

pupil response bin. In the go/no-go datasets, we allowed non-decision time, drift rate, and drift bias

to vary with signal strength (i.e., signal loudness). The specifics of the fitting procedures for the yes/

no and go/no-go protocols are described below.

To verify that the best-fitting models did indeed account for the pupil response-dependent

changes in behavior (blue X’s in Figures 1–3), we generated a simulated data set using the fitted

drift diffusion model parameters. Separately for each subject, we simulated 100K trials, while ensur-

ing that the fraction of signal+noise vs noise trials matched that of the empirical data; we then com-

puted RT, as well as sensitivity (signal detection d0) and overall bias (for the go/no-go data sets) or

criterion (for the rest) for every bin (as described above).

We used a similar approach to test which of the models in Figure 6A best explained the pupil

response-dependent changes in behavior (X’s in Figure 6B). Separately for each subject, we simu-

lated data (100K trials per subject) using the fitted parameters of the three alternative models. We

then computed choice bias (Figure 6B), RT (Figure 6—figure supplement 1B), and sensitivity (Fig-

ure 6—figure supplement 1C). Separately for each model, we computed the residuals (sum of

squares of differences) between the empirical and model-predicted choice metrics (Figure 6C).

We also used simulations to test whether systematic variations in drift bias would appear as ran-

dom trial-to-trial variability in the accumulation process (drift rate variability) (Figure 5). We simu-

lated one million trials from two conditions that differed according drift bias (�0.5 in condition 1; 0

in condition 2). Drift rate, boundary separation and non-decision time were fixed at 1, 1, and 0.3,

respectively; drift rate variability was fixed to 0. We then fitted the model to the simulated data

(with the G square method; see below), letting only drift bias vary with condition, and to another ver-

sion of the model in which we fixed drift bias across the two conditions. We repeated the same pro-

cedure for a number of drift bias differences between the simulated conditions (Figure 5B).

Yes-no task
We fitted all yes/no datasets using Markov-chain Monte Carlo sampling as implemented in the

HDDM toolbox (Wiecki et al., 2013). Fitting the model to RT distributions for the separate

responses (termed ‘stimulus coding’ in Wiecki et al., 2013) enabled the estimation of parameters

that could have induced biases towards specific choices. Bayesian MCMC generates full posterior

distributions over parameter estimates, quantifying not only the most likely parameter value but also

the uncertainty associated with that estimate. The hierarchical nature of the model assumes that all

observers in a data set are drawn from a group, with specific group-level prior distributions that are

informed by the literature. In practice, this results in more stable parameter estimates for individual

subjects, who are constrained by the group-level inference. The hierarchical nature of the model also

minimizes the risk of overfitting the data (Katahira, 2016; Vandekerckhove et al., 2011;

Wiecki et al., 2013). Together, this allowed us to vary all of the main parameters

simultaneously with pupil bin (so that they could ‘compete’ capturing the pupil-linked reduction of

choice bias): starting point, boundary separation, drift rate, drift bias and non-decision time. We ran

three separate Markov chains with 12,500 samples each. Of those, 2500 were discarded as burn-in.
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Individual parameter estimates were then estimated from the posterior distributions across the

resulting 10,000 samples. All group-level chains were visually inspected to ensure convergence.

In addition, we computed the Gelman-Rubin R statistic (which compares within-chain and between-

chain variance) and checked that all group-level parameters had an R between 0.99 and 1.01.

To test the robustness of the significance of the pupil-dependent effect on drift bias, we re-fitted

the full model, but now fixing drift criterion or starting point with pupil response bin (Figure 4—fig-

ure supplement 1C). Using deviance information criterion (Spiegelhalter et al., 2002) for model

selection, we compared whether the added complexity of our original model was justified to account

for the data. This is a common metric for comparing hierarchical models, for which a unique ‘likeli-

hood’ is not defined and the effective number of degrees of freedom is often unclear

(Spiegelhalter et al., 2002).

The models in Figure 6 were fitted on the basis of continuous maximum likelihood using the

Python-package PyDDM (Shinn et al., 2020). We modeled urgency as hyperbolically collapsing

bounds (Urai et al., 2019). Specifically, the two choice bounds were modeled to vary over time as

follows:

aup tð Þ ¼ a� a t
tþc

�

�

�

�

a

a=2

adown tð Þ ¼ a t
tþc

�

�

�

�

a=2

0

(4)

In the above, the notation xj jmax
min indicates that x was clamped such that x2 min; max½ �.

Go/no-go task
The above-described hierarchical Bayesian fitting procedure was not used for the go/no-go tasks

because a modified likelihood function was not yet successfully implemented in HDDM. Instead, we

fitted the go/no-go data on the basis of RT quantiles, using the so-called G square method (code

contributed to the master HDDM repository on Github: https://github.com/hddm-devs/hddm/blob/

master/hddm/examples/gonogo_demo.ipynb). The RT distributions for yes choices were repre-

sented by the 0.1, 0.3, 0.5, 0.7 and 0.9 quantiles, and, along with the associated response propor-

tions, contributed to G square; a single bin containing the number of no-go choices contributed to

G square (Ratcliff et al., 2018). Starting point and drift rate variability were fitted but fixed across

the pupil-defined bins. In addition, drift rate, drift bias and non-decision time varied with signal loud-

ness. The same noise-only trials were re-used when fitting the model to each signal loudness.

The absence of no-responses in the go/no-go protocol required fixing one of the two bias param-

eters (starting point or drift bias) as a function of pupil response; leaving both parameters free to

vary led to poor parameter recovery. We fixed starting point on the basis of formal model compari-

son between a model with pupil-dependent variation of drift bias and starting point (Figure 4—fig-

ure supplement 1B). For simplicity, here we ignored signal loudness, but the same was true when

explicitly modeling signal loudness (data not shown).

Statistical comparisons
We used a mixed linear modeling approach implemented in the Python-package ’Statsmodels’

(Seabold and Perktold, 2010) to quantify the dependence of several metrics of overt behavior, or

of estimated model parameters (see above), on pupil response bin. For the go/no-go task, we simul-

taneously quantified the dependence on signal loudness. Our approach was analogous to sequential

polynomial regression analysis (Draper and Smith, 1998), but now performed within a mixed linear

modeling framework. In the first step, we fitted two mixed models to test whether pupil response

bin predominantly exhibited a monotonic effect (first-order) or a non-monotonic effect (second-

order) on the behavioral metric of interest (y). The fixed effects were specified as:

Model 1: y ~ b01þb1Sþb2P
1

Model 2: y ~ b01þb1Sþb2P
1 þb3P

2
(5)

with b as regression coefficients, S as the signal loudness (for go/no-go task), and P as the task-

evoked pupil response bin number. We included the maximal random effects structure justified by

the design (Barr et al., 2013). For data from the go/no-go task, that meant that intercepts and sig-

nal loudness and pupil bin coefficients could vary with participant. For data from the yes/no tasks,
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intercepts and pupil bin coefficients could vary with participant. The mixed models were fitted

through restricted maximum likelihood estimation. Each model was then sequentially tested in a

serial hierarchical analysis, which was based on BIC. This analysis was performed for the complete

sample at once, and it tested whether adding the next higher order model yielded a significantly

better description of the response than the respective lower order model. We tested models from

the first-order (constant, no effect of pupil response) up to the second-order (quadratic, non-mono-

tonic). In the second step, we refitted the winning model through restricted maximum likelihood

estimation (REML).

We used paired-sample t-tests to test for significant differences between the pupil derivative

time course and 0, between pupil responses for yes versus no choices, and for behavioral metrics

between pupil response bins in the picture recognition experiment.

Data and code sharing
The data and analysis scripts are publicly available on https://github.com/jwdegee/2020_eLife_

pupil_bias (copy archived at https://github.com/elifesciences-publications/2020_eLife_pupil_

bias; de Gee, 2020).
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Hupé JM, Lamirel C, Lorenceau J. 2009. Pupil dynamics during bistable motion perception. Journal of Vision 9:
10. DOI: https://doi.org/10.1167/9.7.10, PMID: 19761325

Jahn CI, Gilardeau S, Varazzani C, Blain B, Sallet J, Walton ME, Bouret S. 2018. Dual contributions of
noradrenaline to behavioural flexibility and motivation. Psychopharmacology 235:2687–2702. DOI: https://doi.
org/10.1007/s00213-018-4963-z, PMID: 29998349

Joshi S, Li Y, Kalwani RM, Gold JI. 2016. Relationships between pupil diameter and neuronal activity in the locus
coeruleus, Colliculi, and cingulate cortex. Neuron 89:221–234. DOI: https://doi.org/10.1016/j.neuron.2015.11.
028

Joshi S, Gold JI. 2020. Pupil size as a window on neural substrates of cognition. Trends in Cognitive Sciences 24:
466–480. DOI: https://doi.org/10.1016/j.tics.2020.03.005, PMID: 32331857

Kane GA, Vazey EM, Wilson RC, Shenhav A, Daw ND, Aston-Jones G, Cohen JD. 2017. Increased locus
coeruleus tonic activity causes disengagement from a patch-foraging task. Cognitive, Affective, & Behavioral
Neuroscience 17:1073–1083. DOI: https://doi.org/10.3758/s13415-017-0531-y

Katahira K. 2016. How hierarchical models improve point estimates of model parameters at the individual level.
Journal of Mathematical Psychology 73:37–58. DOI: https://doi.org/10.1016/j.jmp.2016.03.007

Kepecs A, Uchida N, Zariwala HA, Mainen ZF. 2008. Neural correlates, computation and behavioural impact of
decision confidence. Nature 455:227–231. DOI: https://doi.org/10.1038/nature07200, PMID: 18690210

Kimura F, Fukuda M, Tsumoto T. 1999. Acetylcholine suppresses the spread of excitation in the visual cortex
revealed by optical recording: possible differential effect depending on the source of input. European Journal
of Neuroscience 11:3597–3609. DOI: https://doi.org/10.1046/j.1460-9568.1999.00779.x, PMID: 10564367

Knapen T, de Gee JW, Brascamp J, Nuiten S, Hoppenbrouwers S, Theeuwes J. 2016. Cognitive and ocular
factors jointly determine pupil responses under equiluminance. PLOS ONE 11:e0155574. DOI: https://doi.org/
10.1371/journal.pone.0155574

Kobayashi M, Imamura K, Sugai T, Onoda N, Yamamoto M, Komai S, Watanabe Y. 2000. Selective suppression
of horizontal propagation in rat visual cortex by norepinephrine. European Journal of Neuroscience 12:264–
272. DOI: https://doi.org/10.1046/j.1460-9568.2000.00917.x

Krishnamurthy K, Nassar MR, Sarode S, Gold JI. 2017. Arousal-related adjustments of perceptual biases
optimize perception in dynamic environments. Nature Human Behaviour 1:0107. DOI: https://doi.org/10.1038/
s41562-017-0107, PMID: 29034334

Lak A, Nomoto K, Keramati M, Sakagami M, Kepecs A. 2017. Midbrain dopamine neurons signal belief in choice
accuracy during a perceptual decision. Current Biology 27:821–832. DOI: https://doi.org/10.1016/j.cub.2017.
02.026, PMID: 28285994

Larsen RS, Waters J. 2018. Neuromodulatory correlates of pupil dilation. Frontiers in Neural Circuits 12:21.
DOI: https://doi.org/10.3389/fncir.2018.00021, PMID: 29593504

Lee SH, Dan Y. 2012. Neuromodulation of brain states. Neuron 76:209–222. DOI: https://doi.org/10.1016/j.
neuron.2012.09.012, PMID: 23040816

Lee CR, Margolis DJ. 2016. Pupil dynamics reflect behavioral choice and learning in a go/NoGo tactile Decision-
Making task in mice. Frontiers in Behavioral Neuroscience 10:200. DOI: https://doi.org/10.3389/fnbeh.2016.
00200, PMID: 27847470

Liu Y, Rodenkirch C, Moskowitz N, Schriver B, Wang Q. 2017. Dynamic lateralization of pupil dilation evoked by
locus coeruleus activation results from sympathetic, not parasympathetic, contributions. Cell Reports 20:3099–
3112. DOI: https://doi.org/10.1016/j.celrep.2017.08.094, PMID: 28954227

Ma WJ, Jazayeri M. 2014. Neural coding of uncertainty and probability. Annual Review of Neuroscience 37:205–
220. DOI: https://doi.org/10.1146/annurev-neuro-071013-014017, PMID: 25032495

Mather M, Clewett D, Sakaki M, Harley CW. 2016. Norepinephrine ignites local hotspots of neuronal excitation:
how arousal amplifies selectivity in perception and memory. Behavioral and Brain Sciences 39:e200.
DOI: https://doi.org/10.1017/S0140525X15000667, PMID: 26126507

de Gee et al. eLife 2020;9:e54014. DOI: https://doi.org/10.7554/eLife.54014 23 of 25

Research advance Neuroscience

https://doi.org/10.1146/annurev-neuro-071714-034002
http://www.ncbi.nlm.nih.gov/pubmed/25897875
https://doi.org/10.1016/j.cub.2018.05.051
http://www.ncbi.nlm.nih.gov/pubmed/29983318
https://doi.org/10.3758/CABN.10.2.252
http://www.ncbi.nlm.nih.gov/pubmed/20498349
https://doi.org/10.1146/annurev.neuro.29.051605.113038
http://www.ncbi.nlm.nih.gov/pubmed/17600525
https://doi.org/10.1038/nrn3084
https://doi.org/10.1038/nrn3084
http://www.ncbi.nlm.nih.gov/pubmed/21829219
https://doi.org/10.1016/j.conb.2006.09.002
http://www.ncbi.nlm.nih.gov/pubmed/17011181
https://doi.org/10.1016/S0006-8993(00)02766-9
https://doi.org/10.1016/S0006-8993(00)02766-9
http://www.ncbi.nlm.nih.gov/pubmed/11032989
https://doi.org/10.1167/9.7.10
http://www.ncbi.nlm.nih.gov/pubmed/19761325
https://doi.org/10.1007/s00213-018-4963-z
https://doi.org/10.1007/s00213-018-4963-z
http://www.ncbi.nlm.nih.gov/pubmed/29998349
https://doi.org/10.1016/j.neuron.2015.11.028
https://doi.org/10.1016/j.neuron.2015.11.028
https://doi.org/10.1016/j.tics.2020.03.005
http://www.ncbi.nlm.nih.gov/pubmed/32331857
https://doi.org/10.3758/s13415-017-0531-y
https://doi.org/10.1016/j.jmp.2016.03.007
https://doi.org/10.1038/nature07200
http://www.ncbi.nlm.nih.gov/pubmed/18690210
https://doi.org/10.1046/j.1460-9568.1999.00779.x
http://www.ncbi.nlm.nih.gov/pubmed/10564367
https://doi.org/10.1371/journal.pone.0155574
https://doi.org/10.1371/journal.pone.0155574
https://doi.org/10.1046/j.1460-9568.2000.00917.x
https://doi.org/10.1038/s41562-017-0107
https://doi.org/10.1038/s41562-017-0107
http://www.ncbi.nlm.nih.gov/pubmed/29034334
https://doi.org/10.1016/j.cub.2017.02.026
https://doi.org/10.1016/j.cub.2017.02.026
http://www.ncbi.nlm.nih.gov/pubmed/28285994
https://doi.org/10.3389/fncir.2018.00021
http://www.ncbi.nlm.nih.gov/pubmed/29593504
https://doi.org/10.1016/j.neuron.2012.09.012
https://doi.org/10.1016/j.neuron.2012.09.012
http://www.ncbi.nlm.nih.gov/pubmed/23040816
https://doi.org/10.3389/fnbeh.2016.00200
https://doi.org/10.3389/fnbeh.2016.00200
http://www.ncbi.nlm.nih.gov/pubmed/27847470
https://doi.org/10.1016/j.celrep.2017.08.094
http://www.ncbi.nlm.nih.gov/pubmed/28954227
https://doi.org/10.1146/annurev-neuro-071013-014017
http://www.ncbi.nlm.nih.gov/pubmed/25032495
https://doi.org/10.1017/S0140525X15000667
http://www.ncbi.nlm.nih.gov/pubmed/26126507
https://doi.org/10.7554/eLife.54014


McGinley MJ, David SV, McCormick DA. 2015a. Cortical membrane potential signature of optimal states for
sensory signal detection. Neuron 87:179–192. DOI: https://doi.org/10.1016/j.neuron.2015.05.038,
PMID: 26074005

McGinley MJ, Vinck M, Reimer J, Batista-Brito R, Zagha E, Cadwell CR, Tolias AS, Cardin JA, McCormick DA.
2015b. Waking state: rapid variations modulate neural and behavioral responses. Neuron 87:1143–1161.
DOI: https://doi.org/10.1016/j.neuron.2015.09.012, PMID: 26402600

Moran RJ, Campo P, Symmonds M, Stephan KE, Dolan RJ, Friston KJ. 2013. Free energy, precision and learning:
the role of cholinergic neuromodulation. Journal of Neuroscience 33:8227–8236. DOI: https://doi.org/10.1523/
JNEUROSCI.4255-12.2013, PMID: 23658161

Mridha Z, Gee JWde, Shi Y, Alkashgari R, Williams J, Suminski A, Ward MP, Zhang W, McGinley MJ. 2019.
Graded recruitment of pupil-linked neuromodulation by parametric stimulation of the vagus nerve. bioRxiv.
DOI: https://doi.org/10.1101/2019.12.28.890111

Murphy PR, O’Connell RG, O’Sullivan M, Robertson IH, Balsters JH. 2014. Pupil diameter covaries with BOLD
activity in human locus coeruleus. Human Brain Mapping 35:4140–4154. DOI: https://doi.org/10.1002/hbm.
22466, PMID: 24510607

Murphy PR, Boonstra E, Nieuwenhuis S. 2016. Global gain modulation generates time-dependent urgency
during perceptual choice in humans. Nature Communications 7:13526. DOI: https://doi.org/10.1038/
ncomms13526, PMID: 27882927

Naber M, Alvarez GA, Nakayama K. 2013. Tracking the allocation of attention using human pupillary oscillations.
Frontiers in Psychology 4:19. DOI: https://doi.org/10.3389/fpsyg.2013.00919, PMID: 24368904

Najafi F, Churchland AK. 2018. Perceptual Decision-Making: a field in the midst of a transformation. Neuron 100:
453–462. DOI: https://doi.org/10.1016/j.neuron.2018.10.017, PMID: 30359608

Nassar MR, Rumsey KM, Wilson RC, Parikh K, Heasly B, Gold JI. 2012. Rational regulation of learning dynamics
by pupil-linked arousal systems. Nature Neuroscience 15:1040–1046. DOI: https://doi.org/10.1038/nn.3130,
PMID: 22660479

Parikh V, Kozak R, Martinez V, Sarter M. 2007. Prefrontal acetylcholine release controls cue detection on multiple
timescales. Neuron 56:141–154. DOI: https://doi.org/10.1016/j.neuron.2007.08.025, PMID: 17920021

Pfeffer T, Avramiea AE, Nolte G, Engel AK, Linkenkaer-Hansen K, Donner TH. 2018. Catecholamines alter the
intrinsic variability of cortical population activity and perception. PLOS Biology 16:e2003453. DOI: https://doi.
org/10.1371/journal.pbio.2003453, PMID: 29420565

Pinto L, Rajan K, DePasquale B, Thiberge SY, Tank DW, Brody CD. 2019. Task-Dependent changes in the Large-
Scale dynamics and necessity of cortical regions. Neuron 104:810–824. DOI: https://doi.org/10.1016/j.neuron.
2019.08.025, PMID: 31564591

Pouget A, Beck JM, Ma WJ, Latham PE. 2013. Probabilistic brains: knowns and unknowns. Nature Neuroscience
16:1170–1178. DOI: https://doi.org/10.1038/nn.3495, PMID: 23955561

Pouget A, Drugowitsch J, Kepecs A. 2016. Confidence and certainty: distinct probabilistic quantities for different
goals. Nature Neuroscience 19:366–374. DOI: https://doi.org/10.1038/nn.4240, PMID: 26906503

Ratcliff R. 1978. A theory of memory retrieval. Psychological Review 85:59–108. DOI: https://doi.org/10.1037/
0033-295X.85.2.59

Ratcliff R, Huang-Pollock C, McKoon G. 2018. Modeling individual differences in the go/No-go task with a
diffusion model. Decision 5:42–62. DOI: https://doi.org/10.1037/dec0000065, PMID: 29404378

Ratcliff R, McKoon G. 2008. The diffusion decision model: theory and data for two-choice decision tasks. Neural
Computation 20:873–922. DOI: https://doi.org/10.1162/neco.2008.12-06-420, PMID: 18085991

Reimer J, Froudarakis E, Cadwell CR, Yatsenko D, Denfield GH, Tolias AS. 2014. Pupil fluctuations track fast
switching of cortical states during quiet wakefulness. Neuron 84:355–362. DOI: https://doi.org/10.1016/j.
neuron.2014.09.033, PMID: 25374359

Reimer J, McGinley MJ, Liu Y, Rodenkirch C, Wang Q, McCormick DA, Tolias AS. 2016. Pupil fluctuations track
rapid changes in adrenergic and cholinergic activity in cortex. Nature Communications 7:13289. DOI: https://
doi.org/10.1038/ncomms13289, PMID: 27824036

Sara SJ. 2009. The locus coeruleus and noradrenergic modulation of cognition. Nature Reviews Neuroscience 10:
211–223. DOI: https://doi.org/10.1038/nrn2573, PMID: 19190638

Schriver BJ, Perkins SM, Sajda P, Wang Q. 2020. Interplay between components of pupil-linked phasic arousal
and its role in driving behavioral choice in go/No-Go perceptual decision-making. Psychophysiology 28:
e13565. DOI: https://doi.org/10.1111/psyp.13565

Seabold S, Perktold J. 2010. Statsmodels: econometric and statistical modeling with Python. Python in Science
Conference. DOI: https://doi.org/10.25080/Majora-92bf1922-011

Shadlen MN, Kiani R. 2013. Decision making as a window on cognition. Neuron 80:791–806. DOI: https://doi.
org/10.1016/j.neuron.2013.10.047, PMID: 24183028

ShadlenMN, Shohamy D. 2016. Decision making and sequential sampling frommemory.Neuron 90:927–939.
DOI: https://doi.org/10.1016/j.neuron.2016.04.036, PMID: 27253447

Shine JM. 2019. Neuromodulatory influences on integration and segregation in the brain. Trends in Cognitive
Sciences 23:572–583. DOI: https://doi.org/10.1016/j.tics.2019.04.002, PMID: 31076192

Shinn M, Lam NH, Murray JD. 2020. A flexible framework for simulating and fitting generalized drift-diffusion
models. bioRxiv. DOI: https://doi.org/10.1101/2020.03.14.992065

Siegel M, Engel AK, Donner TH. 2011. Cortical network dynamics of perceptual decision-making in the human
brain. Frontiers in Human Neuroscience 5:21. DOI: https://doi.org/10.3389/fnhum.2011.00021,
PMID: 21427777

de Gee et al. eLife 2020;9:e54014. DOI: https://doi.org/10.7554/eLife.54014 24 of 25

Research advance Neuroscience

https://doi.org/10.1016/j.neuron.2015.05.038
http://www.ncbi.nlm.nih.gov/pubmed/26074005
https://doi.org/10.1016/j.neuron.2015.09.012
http://www.ncbi.nlm.nih.gov/pubmed/26402600
https://doi.org/10.1523/JNEUROSCI.4255-12.2013
https://doi.org/10.1523/JNEUROSCI.4255-12.2013
http://www.ncbi.nlm.nih.gov/pubmed/23658161
https://doi.org/10.1101/2019.12.28.890111
https://doi.org/10.1002/hbm.22466
https://doi.org/10.1002/hbm.22466
http://www.ncbi.nlm.nih.gov/pubmed/24510607
https://doi.org/10.1038/ncomms13526
https://doi.org/10.1038/ncomms13526
http://www.ncbi.nlm.nih.gov/pubmed/27882927
https://doi.org/10.3389/fpsyg.2013.00919
http://www.ncbi.nlm.nih.gov/pubmed/24368904
https://doi.org/10.1016/j.neuron.2018.10.017
http://www.ncbi.nlm.nih.gov/pubmed/30359608
https://doi.org/10.1038/nn.3130
http://www.ncbi.nlm.nih.gov/pubmed/22660479
https://doi.org/10.1016/j.neuron.2007.08.025
http://www.ncbi.nlm.nih.gov/pubmed/17920021
https://doi.org/10.1371/journal.pbio.2003453
https://doi.org/10.1371/journal.pbio.2003453
http://www.ncbi.nlm.nih.gov/pubmed/29420565
https://doi.org/10.1016/j.neuron.2019.08.025
https://doi.org/10.1016/j.neuron.2019.08.025
http://www.ncbi.nlm.nih.gov/pubmed/31564591
https://doi.org/10.1038/nn.3495
http://www.ncbi.nlm.nih.gov/pubmed/23955561
https://doi.org/10.1038/nn.4240
http://www.ncbi.nlm.nih.gov/pubmed/26906503
https://doi.org/10.1037/0033-295X.85.2.59
https://doi.org/10.1037/0033-295X.85.2.59
https://doi.org/10.1037/dec0000065
http://www.ncbi.nlm.nih.gov/pubmed/29404378
https://doi.org/10.1162/neco.2008.12-06-420
http://www.ncbi.nlm.nih.gov/pubmed/18085991
https://doi.org/10.1016/j.neuron.2014.09.033
https://doi.org/10.1016/j.neuron.2014.09.033
http://www.ncbi.nlm.nih.gov/pubmed/25374359
https://doi.org/10.1038/ncomms13289
https://doi.org/10.1038/ncomms13289
http://www.ncbi.nlm.nih.gov/pubmed/27824036
https://doi.org/10.1038/nrn2573
http://www.ncbi.nlm.nih.gov/pubmed/19190638
https://doi.org/10.1111/psyp.13565
https://doi.org/10.25080/Majora-92bf1922-011
https://doi.org/10.1016/j.neuron.2013.10.047
https://doi.org/10.1016/j.neuron.2013.10.047
http://www.ncbi.nlm.nih.gov/pubmed/24183028
https://doi.org/10.1016/j.neuron.2016.04.036
http://www.ncbi.nlm.nih.gov/pubmed/27253447
https://doi.org/10.1016/j.tics.2019.04.002
http://www.ncbi.nlm.nih.gov/pubmed/31076192
https://doi.org/10.1101/2020.03.14.992065
https://doi.org/10.3389/fnhum.2011.00021
http://www.ncbi.nlm.nih.gov/pubmed/21427777
https://doi.org/10.7554/eLife.54014


Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A. 2002. Bayesian measures of model complexity and fit.
Journal of the Royal Statistical Society: Series B 64:583–639. DOI: https://doi.org/10.1111/1467-9868.00353
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