
Received: June 25, 2021. Revised: September 9, 2021. Accepted: October 12, 2021
© The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

Cerebral Cortex, 2022, 32, 3081–3097

https://doi.org/10.1093/cercor/bhab402
Advance access publication date: 28 November 2021

Original Article

Prediction errors for aversive events shape long-term
memory formation through a distinct neural mechanism

Felix Kalbe, Lars Schwabe ,*

Department of Cognitive Psychology, Institute of Psychology, Universität Hamburg, Hamburg 20146, Germany
*Corresponding author: Lars Schwabe. Email: lars.schwabe@uni-hamburg.de

Prediction errors (PEs) have been known for decades to guide associative learning, but their role in episodic memory formation has
been discovered only recently. To identify the neural mechanisms underlying the impact of aversive PEs on long-term memory
formation, we used functional magnetic resonance imaging, while participants saw a series of unique stimuli and estimated the
probability that an aversive shock would follow. Our behavioral data showed that negative PEs (i.e., omission of an expected outcome)
were associated with superior recognition of the predictive stimuli, whereas positive PEs (i.e., presentation of an unexpected outcome)
impaired subsequent memory. While medial temporal lobe (MTL) activity during stimulus encoding was overall associated with
enhanced memory, memory-enhancing effects of negative PEs were linked to even decreased MTL activation. Additional large-
scale network analyses showed PE-related increases in crosstalk between the “salience network” and a frontoparietal network
commonly implicated in memory formation for expectancy-congruent events. These effects could not be explained by mere changes
in physiological arousal or the prediction itself. Our results suggest that the superior memory for events associated with negative
aversive PEs is driven by a potentially distinct neural mechanism that might serve to set these memories apart from those with
expected outcomes.
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Introduction
Imagine meeting Barack Obama in the supermarket.
Most likely, this event would deviate strongly from what
you expected during your grocery shopping, resulting
in a prediction error (PE). PEs are considered a to be
driving force in reinforcement learning, during which an
organism learns incrementally to achieve pleasant and
avoid unpleasant states (Niv 2009; Glimcher 2011). More-
over, it may be expected that single episodes encoded
in the context of a high PE should be preferentially
stored in episodic memory. Although this would aid
behavioral adaptation (Shohamy and Adcock 2010;
Gershman and Daw 2017), PEs received little attention
in episodic memory research (for early exceptions, see
Henson and Gagnepain 2010; Mizumori 2013). Only
recently, behavioral evidence started to accumulate
showing that PEs associated with appetitive or aversive
events may promote episodic memory formation of
nearby events (Greve et al. 2017; Rouhani et al. 2018;
Jang et al. 2019; Ergo et al. 2020; Kalbe and Schwabe
2020). A fundamental question concerns how PEs
boost long-term memory formation. While PEs in both
rewarding and aversive contexts are strongly linked with
the neurotransmitter dopamine (Schultz et al. 1997;

Matsumoto and Hikosaka 2009; Papalini et al. 2020), the
neural mechanisms underlying their modulatory effects
on memory formation are still largely unknown.

One way through which PEs may promote memory for
surrounding events is by enhancing well-known mecha-
nisms of long-term memory formation strongly linked to
the medial temporal regions, including the hippocampus
and parahippocampal gyrus (Alvarez and Squire 1994;
Eichenbaum 2001). It is further well established that
hippocampal memory formation is enhanced by emo-
tional arousal through a process thought to be mediated
by the amygdala, which strengthens memory formation
processes in the hippocampus, parahippocampal gyrus,
and related areas that together form a “medial tempo-
ral encoding network” (MTEN, McGaugh and Roozendaal
2002; Richardson et al. 2004; Strange and Dolan 2004;
Hermans et al. 2014). Thus, one hypothesis would be
that PE-driven episodic memory enhancements are due
to increases in medial temporal lobe activation.

Alternatively, PEs might drive long-term memory for-
mation through mechanisms that are distinct from those
known to underlie common memory formation. Initial
behavioral evidence suggests that PE effects on episodic
memory formation go beyond the effects of physiological
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arousal (Kalbe and Schwabe 2020). Furthermore, events
associated with high PEs have been suggested to create
event boundaries and establish a new latent context
resulting in a separate memory trace (Rouhani et al.
2020). These behavioral findings point to the alternative
that PEs might induce a qualitative shift in mnemonic
processing. Specifically, an alertness response in reaction
to unexpected outcomes (Summerfield and Egner 2009;
Metereau and Dreher 2013) may be mediated by the
salience network (Ham et al. 2013; Fouragnan et al. 2018),
mainly comprised of the bilateral anterior insula and the
dorsal anterior cingulate cortex (dACC; Garrison et al.
2013; Ham et al. 2013). At the same time, if high PE
events are processed separately from expected events
that match existing knowledge structures represented in
what is referred to as a schema (Ghosh and Gilboa 2014),
it can be further predicted that PEs result in a decreased
recruitment of the neural “schema-network,” comprised
mainly of the angular gyrus, the precuneus and the
medial prefrontal cortex (mPFC; van Kesteren et al. 2012;
Vogel et al. 2018a). Accordingly, this alternative view
predicts that the enhanced memory for events encoded
in the context of high PEs is due to an activation of
the salience network, accompanied by an even reduced
activation of areas implicated in memory formation for
events that are in line with prior experience (i.e., the
MTEN and “schema-network”).

To test these alternative hypotheses, participants per-
formed an incidental encoding task in which they saw a
series of stimuli from different categories that were asso-
ciated with different probabilities to receive a mild elec-
tric shock. Comparing shock expectancy ratings given by
participants to the actual trial outcome allowed us to
determine the direction and extent to which participants
experienced a PE in each trial. In line with the terminol-
ogy of the influential Rescorla-Wagner model (Rescorla
and Wagner 1972), we labeled an unexpected omission
of the reinforcer (i.e., an unexpected shock omission) a
negative PE, while the unexpected delivery of the rein-
forcer (i.e., an unexpected shock) was labeled a positive
PE (Schultz 1998; Delgado et al. 2008; McHugh et al.
2014). Memory was probed in a recognition test 24 h after
encoding. To unravel the neural mechanisms underlying
PE-related enhancements of episodic memory, we used
behavioral modeling, arousal measurement and fMRI in
combination with large-scale network analysis.

Materials and methods
Participants
Sixty-one healthy volunteers (35 women, 26 men;
mean age ± SD = 24.97 ± 4.65 years) participated in this
experiment. Eleven participants had to be excluded
from the analysis due to excessive head motion in the
scanner (>5 mm within a single experimental block;
N = 2), incidental finding of a frontal lesion (N = 1),
missing >25% of responses on the task (N = 6), selecting
only extreme ratings (i.e., 0% and 100%; N = 1), or not

returning for the second experimental day (N = 1). To
determine the target sample size, we performed an
a priori power analysis based on previous findings
of binary aversive PE effects on episodic memory
formation (Kalbe and Schwabe 2020). As this study
used a conceptually similar generalized linear mixed-
effect model, we applied a simulation-based approach
using the SIMR R package (Green and MacLeod 2016). We
assumed the same effect size but increased the number
of trials from 60 to 120 to account for the modified design
in the present study. This indicated that a sample size of
N = 50 participants would result in a statistical power
of above 0.95. All participants met safety criteria for MRI
and electrodermal stimulation, had normal or corrected-
to-normal vision, were right-handed, had never studied
psychology nor neuroscience, did not suffer from any
psychiatric or neurological conditions, and reported no
alcohol abuse, nor use of any illicit drug. They were paid
45e upon completion of the second experimental day.
The study protocol was approved by the ethics board of
the University of Hamburg and all participants provided
written informed consent prior to their participation.

Experimental procedure
The experiment took place on two consecutive days.
On the first experimental day, participants completed a
combined incidental encoding and fear learning task in
the MRI scanner (Fig. 1A). About 24 h later, they com-
pleted a surprise recognition test for stimuli presented
during the encoding session.

At the beginning of the first experimental day, par-
ticipants provided informed consent and were prepared
for the MRI scanner by placing a pair of MRI-safe gelled
disposable electrodes (BIOPAC systems, Goleta, CA) over
the thenar eminence of the left hand to measure skin
conductance as an indicator of physiological arousal dur-
ing the encoding task using the BIOPAC MP-160 system
(BIOPAC systems, Goleta, CA). Another pair of electrodes
was placed on the right side of the right lower leg, approx-
imately 20 cm above the ankle, and used to administer
aversive electric shocks during the fear learning task.
Shocks were applied using the BIOPAC STMISOC (BIOPAC
systems, Goleta, CA) connected to a BIOPAC STM100C
stimulator (BIOPAC systems, Goleta, CA). After partici-
pants were placed in the scanner, they first completed
an unrelated task that included stimuli that were distinct
from the stimuli used in this experiment.

Prior to the start of the fear learning task, shock inten-
sity was adjusted to be unpleasant but not painful by
administering a series of test shocks that increased in
intensity until participants rated the shocks as not yet
painful but highly unpleasant. Participants then received
detailed written instructions about the following fear
learning task. On each trial, participants saw an image
that was presented centrally on a screen for 4.5 s (Fig. 1A).
Beneath each image, participants saw a slider that always
started at 50% and could be adjusted to any integer value
between 0% and 100% by using the left and right buttons
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Fig. 1. Experimental task and performance parameters. (A) Participants completed a combined incidental encoding and fear learning task and a
surprise recognition test for its contents about 24 h later. In the encoding task, participants saw a series of unique pictures from three different
categories (clothing, vehicles, and tools) linked to fixed probabilities to receive an electric shock (CSa+—67%, CSb+—33%, and CS−—0%). On each trial,
participants indicated their shock expectation. Approximately 24 h later, they saw all pictures from the previous day intermixed with the same number
of new pictures and categorized each picture as either “old” or “new.” (B) Mean standardized anticipatory skin conductance responses (SCR) confirmed
successful fear conditioning, as reflected in significantly elevated SCR to both CSa+ and CSb+ items compared with CS− items. Black dots show data
from individual participants. Thick red bar represents group mean, while thin red bars show ±1 standard error of the mean. (C) Participants’ mean shock
expectancy ratings (thick lines) approached the true shock probabilities (dotted lines) relatively fast, although there was a tendency to overestimate
shock probabilities. Thin lines represent data from individual participants. (D) Signed PEs were prevalent in both the positive and negative domain for
CSa+ and CSb+ pictures. PEs for CS− pictures were mostly zero, reflecting that participants learned that items from this category were never paired with
a shock. †P < 0.05, ∗Pcorr < 0.05.

of an MRI-compatible response box (Current Designs Inc.,
Philadelphia). Participants were instructed that while
each image was present, they should adjust the slider
to a value that corresponded with their prediction of
the probability that a shock would follow. Participants
were requested to confirm their rating by pressing the
central button on the response box. In 40 out of the
total of 120 trials, a 200 ms shock to the right lower
leg followed immediately after image offset. Between
trials, there was a jittered white fixation cross presented
for 5–8 s. This relatively long inter-trial interval allowed
us to observe the slowly emerging skin conductance
response (SCR) to each outcome as well as to separate
trials at the neural level. Critically, the probabilities of a
shock were linked to image categories. While participants
were explicitly instructed that they would see images
of vehicles, clothing, and tools, they were not told that
these categories would be linked to pre-defined shock
contingencies. Participants were informed that their pre-
dictions would have no effect on the probability that a
shock would occur, but that their aim should still be to
improve their predictions over the course of the task.
Out of 40 occurrences of the CSa+ category, 27 were fol-
lowed by a shock, corresponding to a shock probability of

approximately 2/3. Likewise, 40 occurrences of the CSb+

category were followed by a shock in 13 trials, leading
to a shock probability of approximately one-third for the
CSb+. Finally, the 40 occurrences of the CS− category were
never followed by a shock. The six possible combinations
of image categories (i.e., vehicles, clothing, tools) with
conditioning categories (i.e., CSa+, CSb+, CS−) were coun-
terbalanced across participants. Participants completed
four blocks with 30 trials each, resulting in a total of 120
trials. All images were selected to be unique exemplars of
their respective categories. For example, there were not
two different pictures of wristbands within the clothing
category. Between each block, the experimenter asked
participants whether they still perceived the shock as
unpleasant but not painful and readjusted the intensity
when needed. Upon completion of all four experimental
blocks, participants rated the average unpleasantness of
the shock over the task on a scale ranging from 1 (“not
unpleasant at all”) to 10 (“extremely unpleasant”). Their
mean rating was 6.31 (SD = 1.49).

After an interval of 22–26 h, participants returned
for a surprise recognition test outside of the MRI scan-
ner. In this recognition test, they saw all 120 images
that had been presented on the previous day randomly
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intermixed with the same number of previously unseen
(“new”) images from the same three categories (40 new
images per category). The allocation of images as learn-
ing items or lures was randomized and therefore unique
for each participant. For each image, participants had a
maximum of 6 s to indicate whether the current image
had been presented on the previous day (“old”) or not
(“new”) and how confident they were, using buttons cor-
responding to “definitely old,” “maybe old,” “maybe new,”
and “definitely new.” Between each of the 240 trials of the
recognition test (120 old, 120 new), a white fixation cross
appeared centrally for 1–2 s.

MRI data acquisition
Functional MRI data were acquired during the incidental
encoding session on a Siemens Magnetom Prisma 3T
scanner equipped with a 64-channel head coil. For each
of the four functional runs, approximately 185 volumes
were recorded using a multi-band echo-planar imaging
(EPI) sequence with the following parameters: 60 axial
slices of 2 mm depth, slice orientation parallel to the AC-
PC line, phase-encoding in AP direction, repetition time
(TR) of 2000 ms, echo time (TE) of 30 ms, 60-degree flip
angle, 224 × 224 mm field of view (FOV), 2 mm isotropic
resolution, EPI factor of 112, echo distance of 0.58 ms. For
each block, four images were recorded before the start of
the behavioral task to ensure equilibrium magnetization.
These initial images were discarded as dummy scans
during further analyses. Following the last functional
run, a T1-weigthed scan was acquired with 256 slices,
coronal orientation, repetition time (TR) of 2300 ms, echo
time (TE) of 2.12 ms, a 240 × 240 mm field of view (FOV),
and a 0.8 × 0.8 × 0.9 mm voxel size.

Behavioral analysis
For each individual trial, the prediction uncertainty (PU)
was derived from participants’ shock predictions, while
signed PEs (sPE) were calculated by contrasting predic-
tions with actual outcomes. Specifically, the PU is a con-
tinuous variable that can take any value between 0 (least
possible uncertainty) and 1 (maximum uncertainty) and
was calculated as:

PU(t) = 1 − |P(t) − 0.5| × 2

where P(t) is the continuous explicit shock prediction
made by the participant in trial t (ranging from 0 to 1).

The sPE in trial t is a continuous variable that can take
any value between −1 and +1 and was calculated as:

sPE(t) = O(t) − P(t)

where O(t) is the binary outcome in trial t (coded 0 when
no shock occurred and 1 when a shock occurred). Note
that the sign of the sPE contains information about
the outcome of the trial. sPEs < 0 could only occur in

unshocked trials, while sPEs > 0 could occur when a
shock occurred. Only for sPE = 0, the binary outcome
of the trial is ambiguous.

The prediction uncertainty PU(t) for any trial t can also
be calculated directly from the sPE (but not vice versa)
using:

PU(t) = 1 − ||sPE(t)| − 0.5| × 2

To test influences of uncertainty, PEs, and arousal
(measured through SCRs) on episodic memory forma-
tion, we performed mixed-effects logistic regression at
the level of individual trials, as implemented in the lme4
R package (Bates et al. 2015). The binary recognition of
a previously presented item (collapsed over confidence
ratings) was treated as the dependent variable, coded
0 for misses and coded 1 for hits. Following recom-
mendations to maximize the generalizability of these
models (Barr et al. 2013), we included the maximum
random effects structure, estimating random intercepts
and random slopes per predictor per subject. We did
not include random intercepts per item to account for
different baseline memorability as their inclusion led to
singular fit in some models. For the central effect of
PEs on memory formation, we considered three possible
relationships: a linear effect of PEs, a quadratic effect of
PEs (i.e., U-shaped), and a quadratic effect with negative
versus positive PEs affecting memory in opposite direc-
tions (i.e., S-shaped). Notably, the later relationship could
be modeled similarly well by a cubic regressor. How-
ever, as the previous literature from the reward domain
reported quadratic effects (Rouhani et al. 2018) and both
regressor differed only negligibly in terms of model fit
(�AIC = 2.2), we only report results from the quadratic S-
shaped regressor.

Skin conductance analysis
During the incidental encoding session of the first
experimental day, we recorded electrodermal activity
as a measure of physiological arousal. These data were
analyzed in Ledalab Version 3.4.9 (Benedek and Kaern-
bach 2010) using a Continuous Decomposition Analysis
(CDA) to derive the average phasic driver within given
response windows. In short, the CDA aims to separate the
continuous skin conductance data into a tonic, stimulus-
independent component, and a phasic, stimulus-driven
component. To obtain more precise estimates of the
underlying sudomotor nerve activity compared with
more traditional methods such as a through-to-peak
analysis, the CDA only considers changes in the phasic
component in response to an event. As a first measure,
we defined anticipatory SCRs as reactions occurring
from the onset of the decision in each trial (i.e., the
confirmation of the shock rating) until the end of the
stimulus presentation (i.e., exactly 4.5 s after stimulus
onset). Additionally, we defined outcome-related SCRs
to occur 0.5 s after the outcome of the current trial was
revealed (i.e., whether a shock would occur or not) until
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2.9 s after the outcome onset to ensure that this measure
would capture activity evoked by the current trial, but not
the following. Skin conductance data were downsampled
from 1000 to 50 Hz. Model optimization was repeated
for four sets of initial values to reduce the influence
of local optima and identify the set of parameters
leading to the overall lowest model error (Benedek and
Kaernbach 2010). The minimum amplitude threshold
was set to 0.01 μS for both anticipatory and the outcome-
related SCRs. Individual physiological factors, such as the
thickness of the corneum, can greatly affect the range of
observed SCRs (Figner and Murphy 2011). To account for
this interindividual variability, both the anticipatory and
the outcome-related SCRs were standardized by dividing
the average phasic driver estimate by the maximum
average phasic driver value observed in any trial of this
participant.

For post-hoc analyses of ANOVA results, we also report
corrected P values under the label Pcorr. In these cases, we
corrected for multiple comparisons using the Bonferroni
method.

fMRI preprocessing
Functional MRI data were preprocessed in MATLAB using
SPM12 (https://www.fil.ion.ucl.ac.uk/spm/software/
spm12). First, functional volumes were spatially realigned
to the first image in the time series. This step also yielded
six motion parameters used in univariate analyses to
control for motion-related activation artifacts. Realigned
volumes were co-registered to each participant’s struc-
tural image. Then, images were spatially normalized
into standard stereotactic (MNI) space using unified seg-
mentation. For univariate fMRI analyses, the normalized
functional images were additionally smoothed with an
8 mm full-width half-maximum Gaussian kernel.

Univariate fMRI analyses
Based on theoretical accounts and results from our
behavioral modeling, we identified 1) prediction uncer-
tainty, 2) shock expectancy, 3) quadratic signed PEs,
and 4) physiological arousal (measured through antic-
ipatory and outcome-related SCR, respectively) as key
variables to explain episodic memory formation in
this fear learning task. To investigate the neural basis
of these effects, we modeled the fMRI time series
using generalized linear models (GLMs). These models
included regressors of the onsets of the stimulus and
outcome presentation as predictors of interest, and
nuisance regressors to account for head movement
(i.e., the six movement parameters derived from spatial
realignment). As behavioral data suggested separable
effects of positive versus negative quadratic prediction
errors on memory formation, we fitted separate models
for unshocked trials (corresponding to negative PEs)
and shocked trials (corresponding to positive PEs). Both
models featured onsets of stimuli with shock expectancy
and prediction uncertainty as parametric modulators.
To control for possible effects of arousal, standardized

anticipatory SCRs were also placed as an additional
parametric modulator on stimulus onsets. A second
regressor featured onsets of outcomes with quadratic
prediction errors as the critical parametric modulator.
Again, we controlled for possible confounding effects of
arousal by placing standardized outcome-related SCRs as
an additional parametric modulator on outcome onsets.

For the estimation procedure, data from each of the
four experimental blocks were concatenated using the
spm_fmri_concatenate function in SPM12, a high-pass
filter at 1/128 Hz was applied, and an AR(1) process was
used to adjust for temporal autocorrelation. Second-level
analysis were constructed from each subject’s first level
contrasts using a standard one-sample t-test approach in
SPM. We thresholded all resulting t-maps using a whole-
brain voxel-level family-wise error corrected P value of
PFWE < 0.05.

To link differences in neural activity with subsequent
recognition performance, we specified two additional
univariate fMRI models: The first model aimed to identify
clusters linked with subsequent recognition during the
encoding of individual stimuli and used stimulus onsets
a regressor with the binary subsequent recognition of
an item as the sole parametric modulator. To elucidate
the neural basis of the memory-enhancing effects of PEs,
we specified an additional univariate fMRI model with
onsets of outcomes (i.e., when a PE occurred) as a regres-
sor and PEs (ranging between 0 and 1), the binary subse-
quent recognition of an item (coded 0 for misses and 1
for hits) and their interaction as parametric modulators.
These models were estimated separately for shocked and
unshocked trials to account for the opposite effects of
negative versus positive PEs on memory using the same
procedure as described above. Based on the vast litera-
ture linking structures of the medial temporal lobe with
declarative memory formation (Alvarez and Squire 1994;
Eichenbaum 2001), we defined the bilateral hippocam-
pus, as well as the bilateral (posterior) parahippocampal
gyrus as regions of interests and performed small volume
corrections, which were additionally corrected for the
number of search regions using a Bonferroni correction.
We refer to these additionally Bonferroni-corrected P val-
ues with Pcorr. Voxels belonging to each of these regions
with a probability threshold of 50% were identified based
on an existing anatomical atlas (Harvard-Oxford struc-
tural atlas; Desikan et al. 2006).

Large-scale network-connectivity analyses
We performed analyses of functional connectivity in the
CONN toolbox (Whitfield-Gabrieli and Nieto-Castanon
2012) to assess how within- and between-network con-
nectivities of memory-relevant brain networks differed
depending on PE magnitudes. As this analysis did not
allow for continuous parametric modulators, we instead
split PEs into low (|sPE| < 0.5) versus high (|sPE| ≥ 0.5).
Our analyses focused on PE effects at outcome time for
unshocked trials. However, in the specific GLM for this
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analysis, we included onset regressors for each com-
bination of the following factors: stimulus versus out-
come onsets, shocked versus unshocked, and low versus
high PEs. This resulted in a total of eight regressors in
this model. In a first-level analysis, to denoise data, we
applied a linear detrending and a standard band-pass
filter of 0.008–0.09 Hz. Besides the just mentioned effects
of PEs, we added white matter, cerebrospinal fluid, and
movement regressors obtained from spatial realignment
as additional confounds to the model. Further analysis
focused on pre-defined regions of interest and networks
implemented in the CONN toolbox: 1) dorsal anterior
cingulate cortex, bilateral anterior insula, bilateral ros-
tral prefrontal cortex and bilateral supramaginal gyrus
forming the salience network (Menon 2011); 2) medial pre-
frontal cortex, bilateral angular gyrus and precuneus
forming the schema network (van Kesteren et al. 2012;
Vogel et al. 2018a); and 3) bilateral hippocampus, bilateral
anterior parahippocampal gyrus, and bilateral posterior
parahippocampal gyrus as the medial temporal encoding
network (Fernández et al. 1999; Shrager et al. 2008).

Results
Successful fear learning
Physiological and explicit rating data indicated suc-
cessful fear learning. Specifically, standardized antic-
ipatory SCR differed significantly between CS cate-
gories, F(2,98) = 3.62, P = 0.030, ηG = 0.011 (Fig. 1B). Post
hoc paired t-tests revealed that participants showed
increased anticipatory SCRs to CSa+ pictures relative
to CS− pictures, t(49) = 2.38, Pcorr = 0.042, dav = 0.27. At
trend level, they also showed greater anticipatory SCRs
to CSb+ pictures compared with CS− pictures, t(49) = 2.10,
P = 0.041, Pcorr = 0.082, dav = 0.20 (Fig. 1B). Explicit shock
ratings further showed that participants learned to
associate picture categories with their respective shock
probabilities over the course of the task (Fig. 1C).
Participants had a significantly higher shock expectancy
for CSa+ (M = 0.78, SD = 0.14) than for CSb+ (M = 0.38,
SD = 0.16), t(49) = 11.53, Pcorr < 0.001, dav = 2.67, and for
CSb+ than for CS− (M = 0.12, SD = 0.12), t(49) = 10.81,
Pcorr < 0.001, dav = 1.87.

From participants’ explicit shock expectancy ratings,
we derived signed PEs by contrasting each prediction
with the binary outcome (i.e., unshocked or shocked) in
the respective trial (see section Materials and Methods).
Resulting PEs ranged from −1 to 1, with negative values in
cases of unexpected shock omissions and positive values
in cases of unexpected shocks, while greater distances
from 0 in both directions indicated greater discrepan-
cies between predictions and outcomes. Importantly, the
distribution of signed PEs (Fig. 1D) showed a sufficient
number of positive and negative PEs to allow reliable con-
clusions of their both their effects on memory formation.
Moreover, the explicit shock ratings allowed us to directly
assess participants’ prediction uncertainty, which ranged
from 0 (maximal certainty, corresponding to predictions

of 0% or 100%) to 1 (maximal uncertainty, corresponding
to a prediction of 50%).

Overall recognition memory performance
In the recognition test 24 h after encoding, participants
performed overall very well, as indicated by markedly
higher hit rates (i.e., the rate of correctly classifying
previously seen pictures as “old”) than false alarm rates
(i.e., the rate of incorrectly classifying unseen pictures
as “old”), Mhitrate = 60.9% (SD = 0.15), MFArate = 21.1%
(SD = 0.098). Participants were significantly more certain
with their responses for hits (M = 0.59, SD = 0.18) than for
false alarms (M = 0.26, SD = 0.20), t(49) = 15.92, P < 0.001,
dav = 1.70.

A repeated-measures ANOVA showed that hit rates dif-
fered significantly between CS categories, F(2,98) = 7.29,
P = 0.001, ηG

2 = 0.05. For false alarm rates, on the
other hand, there was no such difference between CS
categories, F(2,98) = 0.25, P = 0.77, ηG

2 = 0.003, suggesting
that the actual memory but not the response bias
differed between CS categories. Post-hoc paired t-tests
showed that hit rates were selectively enhanced for
items from the CSa+ category, which was associated
with a shock probability of 67%, compared with both
items from the CSb+ category (t(49) = 4.15, Pcorr < 0.001,
dav = 0.54), which was associated with a shock probability
of 33%, and the CS− category (t(49) = 2.64, Pcorr = 0.022,
dav = 0.40; Fig. 2A), which was never followed by a shock.
Enhanced recognition performance for CSa+ items was
also obtained when hits and false alarms were integrated
to the sensitivity d′ based on signal detection theory:
A repeated measures ANOVA confirmed that d′ was
generally different between CS categories (F(2,98) = 3.70,
P = 0.028, ηG

2 = 0.03), with post-hoc t-tests showing a
trend towards an increased memory sensitivity for CSa+

items (M = 1.39, SD = 0.66) compared with CSb+ items
(M = 1.17, SD = 0.51), t(49) = 2.28, P = 0.027, Pcorr = 0.053,
dav = 0.38. Further, memory sensitivity for CSa+ items
was significantly greater than for CS− items (M = 1.17,
SD = 0.60), t(49) = 2.42, Pcorr = 0.038, dav = 0.35.

At first glance, one might assume that these dif-
ferences are simply due to differences in (arousing)
shock presentations between CS categories. However,
our data did not support this interpretation. The greater
proportion of shocked items could not explain the
improved hit rate for the CSa+ category: A repeated-
measures ANOVA to explain hit rates indicated no
memory advantage for shocked over unshocked items
per se (F(1,49) = 1.12, P = 0.294, ηG

2 = 0.022). Further, a
2 × 2 repeated-measures ANOVA confirmed increased
hit rates for CSa+ over CSb+ items even after control-
ling for shocks (F(1,49) = 19.47, P < 0.001, ηG

2 = 0.08).
Notably, this ANOVA even showed a tendency towards
decreased hit rates for shocked items, F(1,49) = 3.76,
P = 0.058, ηG

2 = 0.006), with no significant interaction
(F(1,49) < 0.001, P = 0.997, ηG

2 < 0.0001 (Supplementary
Fig. 1). These findings indicate that differences between
CS categories in the number of presented shocks cannot
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Fig. 2. General recognition performance by CS category. (A) Hit rates for items from the CSa+ category were significantly larger compared with both CSb+
and CS− items. Although CSa+ items had the highest shock probability, this could not explain their increased hit probability as hit rates for shocked items
even tended to be lower than for unshocked items (Supplementary Fig. 1). (B) False alarm rates were comparable for all three conditioning categories,
showing that the CS-type did not affect the mnemonic response bias. Black dots show data from individual participants. Thick red bar represent group
means, while thin red bars show ±1 standard error of the mean. ∗Pcorr < 0.05, ∗∗∗Pcorr < 0.001.

explain the differential memory performance and that
other factors drive the boost in memory.

Aversive PEs and prediction uncertainty
modulate episodic memory formation beyond
arousal
To explain episodic memory formation in the incidental
encoding task at trial level, we fitted generalized linear
mixed-effects models (GLMMs) with a binary response
variable (hit vs. miss) and a logit link function (i.e., mixed-
effects logistic regression) using the lme4 R package
(Bates et al. 2015). The dependent variable was the
recognition of an item in the surprise recognition test,
coded 0 for misses and 1 for hits. We applied the
maximum random effects structure (Barr et al. 2013),
estimating random intercepts and random slopes of all
predictors per subject.

To determine the shape of the putative relationship
between PEs and memory formation (Fig. 3A), we fitted
three initial models over all trials (including both nega-
tive and positive PEs) using 1) linear PEs, 2) quadratic PEs,
and 3) a variant of quadratic PEs that assumes effect of
negative versus positive PEs to be in opposite directions
based on the following inverted S-shaped transforma-
tion:

f (x) =
{

x2

− x2
if x ≤ 0
if x > 0

}

Model comparisons using the Akaike information
criterion (AIC) to identify the optimal model while
also considering increased model complexity favored
the inverted S-shaped model (AIC = 7420.8) over both
the linear (AIC = 7425.2) and the quadratic model
(AIC = 7434.3). The absolute differences in AIC compared
with the best-fitting inverted S-shaped regressor (�AIC)

can be used to evaluate the evidence in favor of an
alternative PE-memory relationship (Cavanaugh and
Neath 2019). This comparison indicated that there was
considerably less evidence for the linear model than for
the inverted S-shaped model, �AIC = 4.4. Furthermore,
there was essentially no evidence in favor of a quadratic
(i.e., U-shaped) effect of PEs on memory, �AIC = 13.5.
Therefore, we only considered the inverted S-shaped PE
regressor in subsequent models of memory formation.
Results from this inverted S-shaped model indicated that
negative PEs enhanced memory formation, while positive
PEs decreased memory formation, β = 0.27, 95%-CI [0.07,
0.47], z = 2.68, P = 0.007.

In a next step, we asked whether the PE-effect is mainly
driven by the CS− category, whose items were never
followed by shock and could therefore only produce neg-
ative, but not positive PEs. Even after excluding all trials
featuring CS− items, the S-shaped PE-effect remained
virtually unchanged, β = 0.30, 95%-CI [0.11, 0.49], z = 3.01,
P = 0.002, suggesting that the observed PE effects was not
primarily owing to CS− items. Therefore, trials from all
three conditioning categories (i.e., CSa+, CSb+, and CS−)
were included in the following analyses.

Results so far suggest that greater negative PEs and
greater positive PEs had opposite effects on episodic
memory formation, with the former increasing and
the latter decreasing the probability of a subsequent
hit. However, this model assumes both effects to be
equally strong in each participant. To further investigate
whether this assumption is justified, we next fitted
models separately for negative and positive PE trials
with quadratic PEs as the sole independent variable to
explain the binary recognition of an item (Fig. 3B). For
negative PEs, we again observed a memory enhancement
with greater PE magnitude, β = 0.49, 95%-CI [0.15, 0.82],

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/32/14/3081/6445113 by U

niversitaets-Krankenhaus Eppendorf user on 18 July 2022

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab402#supplementary-data


3088 | Cerebral Cortex, 2022, Vol. 32, No. 14

Fig. 3. Behavioral model of long-term memory formation reveals modulating influences of prediction errors. (A) Empirical relationship between signed
prediction errors and recognition performance (hit rates). Points show the mean hit rate in each bin, with error bars indicating ±1 standard error of the
mean. (B) Results from a trial-level mixed-effect logistic regression show opposite effects of positive and negative prediction errors on later memory.
Quadratic negative prediction errors (associated with unexpected shock omissions; left half) were linked with improved memory formation for associated
pictures. In contrast, quadratic positive prediction errors (associated with shocks; right half) were linked with decreased memory formation. Orange
line indicates estimated fixed effects of PEs, while thin black lines show PE effects estimated separately per participant. (C) Effects of quadratic negative
and positive PEs were negatively correlated at the level of participants.

z = 2.85, P = 0.004. The same model for positive PEs con-
firmed that greater PE magnitude was instead associated
with decreased memory performance, β = −0.73, 95%-
CI [−1.12, −0.34], z = 3.67, P < 0.001. Random βs per
subject from both models were moderately negatively
correlated, indicating that participants that showed a
stronger memory benefit from negative PEs also showed
a stronger memory decrease from positive PEs, r = −.395,
t(48) = 2.98, P = 0.005 (Fig. 3C).

An alternative explanation for the observed effects of
PEs on recognition memory could be that these PEs are
partially confounded with several control variables that
are known to enhance declarative memory formation. To
investigate this possibility, we next build a joint model
by including potential predictors in a stepwise fashion
and evaluating whether the inclusion of each variable

significantly improved the model fit, which we inter-
preted as evidence that this predictor additionally con-
tributed to memory formation (Table 1). As a baseline
model, we only estimated a random intercept per par-
ticipant to explain the binary recognition of an item.
Next, we added the binary trial outcomes (i.e., shocked
or unshocked) to the model, which had no effect on the
probability that an item would subsequently be recog-
nized, β = 0.09, 95%-CI [−0.03, 0.21], z = 1.52, P = 0.13.

Classic models of episodic memory formation in
aversive contexts emphasized the memory promoting
role of physiological arousal (Cahill and McGaugh 1998;
McGaugh 2018). Therefore, we tested in a next step
whether differences in trial-level memory formation
could be explained by physiological arousal. To this aim,
we first added standardized anticipatory SCRs to the
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Table 1. Comparison of behavioral models of memory formation.

Model npar logLik AIC �AIC χ2 P

Baseline 2 -3713.11 7430.22 31.73
+ Outcomes 3 -3711.96 7429.91 31.41 2.31 0.128
+ Anticipatory SCR 4 -3711.75 7431.51 33.01 0.4 0.526
+ Outcome-related SCR 5 -3711.32 7432.64 34.14 0.87 0.351
+ Uncertainty 6 -3705.24 7422.49 23.99 12.15 <0.001 ∗∗∗

+ Quadratic prediction 7 -3694.18 7402.35 3.86 22.13 <0.001 ∗∗∗

+ S-shaped PE 8 -3691.25 7398.50 0 5.86 0.015 ∗

Notes: npar: Number of parameters in the model; �AIC: Difference in AIC compared with the model leading to the minimal AIC score; χ2 and P refer to
results from a likelihood ratio test whether the inclusion of the predictor significantly improves the model fit.

∗
P < 0.05.

∗∗∗
P < 0.001.

model, which had no significant effect on hit probabil-
ities, β =−0.11, 95%-CI [−0.46, 0.23], z = 0.64, P = 0.53.
Likewise, additionally added standardized outcome-
related SCRs also had no effect on hit probabilities,
β = 0.16, 95%-CI [−0.17, 0.49], z = 0.93, P = 0.35.

Finally, we added cognitive measures associated
with possible shocks to the model. First, uncertainty
about outcomes was linked with decreased subsequent
recognition performance, β = −0.35, 95%-CI [−0.54,
−0.15], z = 3.49, P < 0.001. Shock expectancy is a critical
variable, because it forms, in association with shocks,
the computational basis for PEs. As such, one might
hypothesize that the expectancy component alone,
rather than PEs, which contrasts it with actual outcomes,
is the driving component for the observed memory mod-
ulation. Indeed, adding the quadratic shock expectancy
(analogous to our quadratic conceptualization of PE-
effects) to the model revealed that hit rates were
improved when participants expected that a shock would
follow, β = 0.43, 95%-CI [0.25, 0.60], z = 4.68, P < 0.001.
Critically, adding our S-shaped PE-regressor to the model
again confirmed that their previously described relation-
ship with subsequent memory performance, even after
controlling for several other candidate variables, β = 0.85,
95%-CI [0.16, 1.53], z = 2.42, P = 0.015. Interestingly, in
this full model, quadratic shock expectancy was no
longer significantly associated with subsequent memory,
β = −0.34, 95%-CI [−0.99, 0.30], z = 1.04, P = 0.30. This
full model including our S-shaped PE-regressor also
led to the smallest (i.e., best-fitting) value in AIC
compared with any of the more parsimonious models
(Table 1).

Beyond these trial-unique measures, one might
hypothesize that the perceived aversiveness of shocks
could explain memory formation. To test this hypothesis,
we added participants’ subjective aversiveness rating
as an additional predictor to our model. However, this
indicated no significant effect of shock aversiveness
ratings on recognition performance, β = −0.03, 95%-CI
[−0.15, −0.10], z = 0.40, P = 0.69. Further, we found no
improvement in model fit indices after adding individual
shock ratings (AIC = 7400.3 for the model including shock
ratings versus AIC = 7398.5 for the model without shock
ratings) and therefore preferred the more parsimonious
model.

Medial temporal activity during stimulus
presentation is associated with subsequent
memory
To link neural data with memory formation, we first
ran a subsequent memory analysis in which we asked
which changes in brain activity during stimulus presen-
tation would generally be predictive of the subsequent
recognition of an item. Note that this analysis does
not yet capture any effects of PEs, which only emerged
at a later stage when the outcome of the respective
trial was revealed. We modeled the pre-processed fMRI
time series using a generalized-linear model (GLM)
with stimulus onsets as a regressor and the binary
subsequent recognition of an item as its sole parametric
modulator (see section Materials and Methods). Based
on the rich literature linking the medial temporal lobe
with episodic memory formation (Alvarez and Squire
1994; Eichenbaum 2001), we specified the bilateral hip-
pocampus and the bilateral posterior parahippocampal
gyrus as two candidate regions predicting subsequent
memory and performed a small volume correction. In
line with the literature, results showed that improved
memory formation during encoding was positively
linked with clusters of activity in the left posterior
parahippocampal gyrus, t(49) = 4.90, PSVC = 0.001 (FWE-
corrected), Pcorr = 0.002 (see section Materials and
Methods for details about the applied correction; Fig. 4),
right posterior parahippocampal gyrus, t(49) = 4.16,
PSVC = 0.006 (FWE-corrected), Pcorr = 0.012 and, at trend
level, in the right hippocampus, t(49) = 3.89, PSVC = 0.031
(FWE-corrected), Pcorr = 0.062.

Negative PEs are associated with greater
activation of the salience-network, paralleled by
decreased activation of medial temporal lobe and
schema-networks
To elucidate the neural basis of negative PE-related mem-
ory enhancements, we first asked which brain areas
are modulated by negative PEs. Our results (all find-
ings significant at the whole-brain level at P < 0.05, FWE
corrected) show that negative PEs were associated with
large clusters of increased activity in the bilateral ante-
rior insula and the dACC, which are key regions of the
salience network (Menon 2011; Fig. 5A,B). In addition,
negative PEs were associated with significant decreases
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Fig. 4. Univariate fMRI analysis of subsequent memory. (A) Congruent with the existing literature on medial temporal lobe involvement in declarative
memory formation, greater activation of the hippocampus (HC) as well as the posterior parahippocampal gyrus (PHC) during stimulus presentation
were overall associated with improved subsequent memory performance. (B) Contrarily, for items associated with larger negative PEs that were later
recognized, we found decreased BOLD responses in the right hippocampus and the right parahippocampal gyrus when the outcome of the trial was
revealed. All displayed voxels were thresholded at P < 0.001 (uncorrected) for display purposes only. Black dots indicate beta estimates from individual
participants, while the red line shows the mean beta estimate over all participants. †PSVC < 0.05 (FWE-corrected) ∗Pcorr < 0.05, ∗∗Pcorr < 0.01.

in activation in large portions of the bilateral hippocam-
pus and parahippocampal gyrus (Fig. 5D). Although it is
important to note that this decrease in medial temporal
lobe activity occurred only after outcomes were revealed
and therefore after the offset of the to-be-remembered
stimulus, this finding is in stark contrast to both our
findings linking medial temporal activity during stimulus
presentation with improved memory and earlier studies
demonstrating this relationship (Fernández et al. 1999;
Shrager et al. 2008). These findings therefore provide
evidence that the PE-induced memory enhancement that
we observed here might involve a neural mechanism that
is different from standard modes of memory formation.
In addition to decreased activation in the medial tem-
poral lobe, we also observed decreased activity for neg-
ative PEs in the mPFC, precuneus, and left angular gyrus
(Fig. 5C–E), all three of which have been described as part
of the schema network that links current information
to existing knowledge structures (van Kesteren et al.
2012; Vogel et al. 2018a). This finding might be taken as
evidence that the superior memory for items associated
with large negative PEs is associated with a distinct neu-
ral mechanism that sets these PE events apart from those
with expected outcomes. Further, potential issues with
collinearity in the GLM could not explain our findings,
as indicated by small variance inflation factors for the
critical PE regressor (Supplementary Table 1).

Same as negative PEs, prediction uncertainty in
unshocked trials was associated with decreased acti-
vation in the prefrontal cortex, although this cluster was
located significantly more dorsally for uncertainty (Sup-
plementary Fig. 2A, Supplementary Table 4). Additionally,
we observed decreased activation in the bilateral middle
temporal gyrus (Supplementary Fig. 2B), likely reflecting
decreased visual processing of stimuli associated with
greater prediction uncertainty, which might explain the
reduced memory for items associated with uncertainty.

For mere shock expectancy, we found no significant
changes in activation in any areas that were previously
linked with PEs (i.e., dACC, insula, hippocampus, mPFC,
precuneus, angular gyrus). Instead, shock expectancy
was only associated with changes in occipital areas,

which might reflect visual processing of the slider
that participants used to give their expectancy rating
(Supplementary Table 5). This finding complements
results from the behavioral models suggesting that the
deviation of outcomes from predictions (i.e., PEs) is
critical for memory modulation, rather than the mere
expectation of an aversive stimulus.

Decreased medial temporal activation to larger
negative PEs is linked to improved memory
formation
In a next step, we assessed changes in brain activity that
were directly associated with the enhanced memory
for negative PEs. To this end, we fitted an additional
univariate fMRI model with onsets of unshocked out-
comes (rather than stimulus onsets) as a regressor and
PEs, the binary subsequent recognition of an item and
their interaction as parametric modulators (see section
Materials and Methods). Our analysis focused on the
interaction between PEs and subsequent recognition, as
this specific interaction links the processing of PEs with
their effects on memory formation. As in the previous
analyses on subsequent memory, we focused our analy-
sis on the hippocampus and the posterior parahippocam-
pal gyrus using a small volume correction. In sharp
contrast to our previous subsequent memory analysis
at stimulus onset, we found for items associated with
larger negative PEs that were subsequently recognized
clusters of decreased BOLD activity in the right posterior
parahippocampal gyrus, t(49) = 3.87, PSVC = 0.015 (FWE-
corrected), Pcorr = 0.030 (Fig. 4B). Additionally, there was
a similar non-significant trend in right hippocampus,
t(49) = 3.65, PSVC = 0.062 (FWE-corrected), Pcorr = 0.124.
These results suggest a distinct medial temporal lobe
involvement in overall memory formation and PE-driven
memory enhancements.

Negative PEs are associated with altered
connectivity within and between
memory-relevant neural networks
Based on the theoretical distinction between “standard”
memory processing of events that are in line with
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Fig. 5. Univariate fMRI analysis to identify regions associated with negative PEs. Negative PEs were linked with increased BOLD responses in the bilateral
insula and the dorsal anterior cingulate cortex (dACC), (A, B) and decreased BOLD-responses in the medial prefrontal cortex (mPFC), precuneus, bilateral
hippocampus (HC), bilateral parahippocampal gyrus (PHC), and left angular gyrus (C–E). Only voxels significant at P < 0.05 after whole-brain family-wise
error (FWE) correction (peak level) are displayed. Black dots indicate beta estimates from individual participants, while the red line shows the mean
beta estimate over all participants. ∗∗∗PFWE < 0.001.

prior knowledge and an alternative mode of memory
formation for events that are linked to unexpected
outcomes, we further hypothesized that items associated
with high negative PEs are particularly well remembered
because they alter contributions of three main memory
networks: 1) the salience network (represented by
anterior insula and dACC; Seeley et al. 2007; Menon
2011; Ham et al. 2013; Metereau and Dreher 2013), 2)
the medial-temporal encoding network (represented by
bilateral hippocampus and bilateral parahippocampus),
and 3) the schema network (represented by mPFC,
precuneus, and angular gyrus; van Kesteren et al. 2012;
Vogel et al. 2018a). To address this hypothesis, we
analyzed functional connectivity within and between
these networks depending on PE magnitudes. For this
analysis, we defined a separate GLM with eight regressors
based on combinations of the following factors: onset
type (stimulus vs. outcome), outcome (shocked vs.
unshocked), and PE magnitude (low if |sPE| < 0.5; high
otherwise). After pre-processing the raw times series (see
section Materials and Methods), we based our analysis
on the implemented network atlas consisting of several
ROIs each to compute within- and between-network

correlations (Fig. 6A). Here, we focused on the contrast
between high and low (negative) PEs at the time when the
outcome of each trial was revealed. Results showed sig-
nificant PE-related changes in the connectivity between
large-scale networks. Specifically, for large versus
small negative PEs we obtained significantly increased
functional connectivity between the salience network
and both the schema network (t(49) = 2.68, Pcorr = 0.030,
dav = 0.344) and, at trend level, the medial-temporal
encoding network (t(49) = 2.18, P = 0.034, Pcorr = 0.10,
dav = 0.355; Fig. 6B); the connectivity between the schema
network and the medial-temporal network did not
depend on PEs in unshocked trials, t(49) = 0.29, P = 0.773,
Pcorr = 1, dav = 0.046). When we correlated the two PE-
related increases in between network connectivity with
memory, we found that the increase in functional con-
nectivity between the salience and schema networks was
relevant for long-term memory formation, as indicated
by its significant correlation with improved hit rates for
high negative PE items, r = 0.320, t(48) = 2.34, Pcorr = 0.048
(Fig. 6C); salience-MTEN correlation with hit rates for
high negative PE items: r = 0.147, t(48) = 1.03, P = 0.31,
Pcorr = 0.616. Furthermore, within-network connectivity
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Fig. 6. Negative prediction error magnitude is associated with altered within- and between-network connectivity in memory-relevant networks. (A)
We investigated PE-associated changes in the activity within and between the salience network (rostral prefrontal cortex, supramaginal gyrus, anterior
insula, and dACC), schema network (mPFC, precuneus, and angular gyrus), and medial-temporal encoding network (hippocampus and anterior/posterior
parahippocampal gyrus). (B) Large (vs. small) PEs were associated with significantly increased cross-network connectivity of the salience network with
both the schema-network and the medial-temporal encoding network. Thick red bar represent group means, while thin red bars show ±1 standard error
of the mean. (C) Increases in functional connectivity between salience network and schema network in response to large negative PEs correlated with
greater memory enhancement for large negative PEs. (D) Large (vs. small) PEs were associated with significantly decreased within-network functional
connectivity in the medial temporal encoding network. †P < 0.05, ∗Pcorr < 0.05.

tended to be decreased for large compared with small
negative PEs in the medial-temporal encoding network
(t(49) = 2.44, P = 0.018, Pcorr = 0.055, dav = 0.307), but not in
the salience network (t(49) = 1.60, P = 0.115, Pcorr = 0.346,
dav = 0.218), nor in the schema network (t(49) = 1.24,
P = 0.221, Pcorr = 0.664, dav = 0.221; Fig. 6D).

Positive PEs are associated with parietal and
temporal lobe modulation
So far, our analysis focused on neural underpinnings
of the memory-enhancing effects of negative PEs. How-
ever, our behavioral findings also pointed to a mem-
ory impairment related to positive PEs. To investigate
the neural basis of this detrimental effect on memory,
we specified parallel models for shocked trials. These
revealed that larger positive PEs per se were associated
with increased activity in two smaller clusters located
in the left superior parietal lobule and the right middle

temporal gyrus and decreased activity in the left supra-
marginal gyrus (see Supplementary Table 3). Again, an
analysis of variance inflation factors showed no evidence
that multicollinearity influenced results of the critical PE
regressor (Supplementary Table 2).

To specifically investigate specific neural activity in
response to positive PEs that might underlie their mem-
ory decreasing effects, we fitted a univariate fMRI model
with onsets of shocked outcomes as a regressor and
PEs, the binary subsequent recognition of an item and
their interaction as parametric modulators (see section
Materials and Methods). As in the parallel model for
unshocked trials, our analysis focused on the interaction
between PEs and subsequent recognition, as this specific
interaction links the processing of PEs with their effects
on memory formation. Again, we focused our analysis
on the hippocampus and the posterior parahippocampal
gyrus. Neither the hippocampus, nor the posterior
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parahippocampal gyrus contained any voxels that
specifically linked positive PEs with subsequent memory
formation (all PSVC > 0.05, FWE corrected). Even under a
very liberal threshold of P < 0.001 (uncorrected), there
were no significant voxels in any of the two regions.
An additional explorative analysis at whole-brain level
further showed no other clusters with increased or
decreased levels of activation for the interaction of
positive PEs with subsequent memory (all PFWE > 0.05).

While prediction uncertainty was negatively associ-
ated with subsequent memory in behavioral results,
we found no significant clusters that were specifically
associated with uncertainty in shocked trials (all
PFWE > 0.05). For shock expectancy, which had behav-
iorally been positively linked with memory, we replicated
the findings from unshocked trials. Specifically, shock
expectancy was only associated with changes in occipital
areas, possibly reflecting visual processing of the slider
that participants used to give their expectancy rating
(Supplementary Table 5). This lack of an overlap between
the neural signatures of shock expectancy and positive
PEs might be taken as evidence that these two reflect
separate cognitive processes, in line with our behavioral
findings that PE-effects on memory go beyond mere
expectancy effects.

Discussion
For decades, PEs have been known to act as teaching
signals in reinforcement learning (Sutton and Barto 1981;
Schultz 1998; Cohen 2008). However, it was only rather
recently discovered that PEs may shape memory forma-
tion for episodes preceding the PE event (Ergo et al. 2020).
Here, we combined fMRI with behavioral modeling and
large-scale network connectivity analyses to elucidate
the mechanisms through which PEs associated with aver-
sive events modulate the formation of long-term mem-
ories. Our results provide evidence that negative PEs for
aversive events promote memory formation for preced-
ing stimuli through a mechanism that might be distinct
from common mechanisms of long-term memory forma-
tion. Importantly, the proposed PE-related memory stor-
age mechanism could not be attributed to well-known
effects of physiological arousal on memory formation or
the effect of a specific prediction itself.

Traditionally, enhanced episodic memory formation
has been linked to the medial temporal lobe, including
the hippocampus and the parahippocampal gyrus (Reed
and Squire 1997; Fernández et al. 1999; Davachi and
Wagner 2002; Eichenbaum 2004; Mayes et al. 2007;
Shrager et al. 2008). In line with this assumption, we
found that activity in the hippocampus and posterior
parahippocampal gyrus during stimulus presentation
was linked to subsequent memory performance. The
negative PE-related memory enhancement, however, was
not linked to enhanced but even to decreased medial
temporal lobe activity. Further, when participants expe-
rienced a negative PE, the connectivity within the medial-

temporal encoding network tended to be reduced.
While activity in the medial temporal lobe was reduced
for negative PEs, we obtained significantly increased
activity in the anterior insula and dACC for negative
PE events. Both of these regions have previously been
implicated in error monitoring, conscious perception
of errors, and aversive PE signaling (Taylor et al. 2007;
Preuschoff et al. 2008; Ullsperger et al. 2010; Garrison
et al. 2013; Bastin et al. 2016; Fazeli and Büchel 2018).
Moreover, both the anterior insula and the dACC are
key regions of the salience network (Menon 2011; Ham
et al. 2013), which signals biologically relevant events
and the need for a behavioral or cognitive change (Kerns
2004; Dosenbach et al. 2006). Furthermore, the salience
network has been proposed to dynamically change the
control of other large-scale networks (Sridharan et al.
2008). In line with this idea, we obtained here a trend for
increased functional connectivity between the salience
network and the medial-temporal encoding network for
negative PEs.

In addition to the negative PE-related decrease in
medial temporal activity, there was also a marked
decrease in the activity of angular gyrus, precuneus,
and mPFC for events associated with negative PEs.
Together, these areas form a “schema-network,” in
which the mPFC is thought to detect a congruency
of events with prior knowledge and to then integrate
these events into existing knowledge representations
(van Kesteren et al. 2012; Vogel et al. 2018b). When
the organism experiences large PEs, this indicates that
new information conflicts with prior knowledge and
should therefore be stored separately from existing
schema-congruent memories (van Kesteren et al. 2012).
This idea is supported by the obtained negative PE-
associated decrease in areas constituting the schema
network. Moreover, there was also increased connectivity
between the salience network and the schema-network
when individuals experienced a negative PE and this
PE-related change in large-scale network connectivity
was directly correlated with the negative PE-driven
memory enhancement. Together these findings suggest
that the negative PE-induced enhancement of episodic
memory is not driven by an enhancement of common
medial temporal mechanisms of memory formation
but by a potentially distinct mechanism that is linked
to the salience network and separates PE events from
experiences that are in line with prior knowledge.

The salience network has often been related to
physiological arousal (Xia et al. 2017; Young et al. 2017),
which is well known to mediate the superior memory
for emotionally arousing events (Cahill and McGaugh
1998; McGaugh 2018). Although one might assume that
high negative PEs may have elicited arousal which then
enhanced memory storage, our data speak against this
alternative and suggest that negative PE-related memory
enhancement was not due to increased physiological
arousal. First, aversive shocks per se had no influence on
memory formation. Even in a combined model featuring
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both anticipatory and outcome-related SCRs in addition
to PEs, we still found clear evidence for complementary
effects of PEs beyond these arousal measures. Impor-
tantly, specific neural clusters associated with negative
PEs were identified in a model that controlled for
physiological arousal. These results indicate that the
effects of PEs on episodic memory formation cannot
be explained by traditional arousal-based models.
One could speculate whether this dissociation is also
reflected in a different neuroendocrinological basis of
arousal- versus PE-based effects. While the effects of
arousal on memory formation have been strongly linked
to the action of noradrenaline (Cahill and McGaugh
1998; Strange and Dolan 2004), PEs in both the reward
and aversive domain are typically associated with
dopamine (Schultz et al. 1997; Papalini et al. 2020). Future
studies could test this account through pharmacological
manipulations.

Another challenge is separating specific effects of PEs
from those of mere shock expectancy. This is complicated
by the fact that PEs incorporate information about
both shock predictions and actual outcomes, making
them conceptually close to an interaction between
these two. The presence of such interaction effects in
regression models often comes with high collinearity,
which makes estimated regression coefficients less
stable by inflating standard errors (Echambadi and
Hess 2007). However, we found consistent evidence
for memory-modulating effects of PEs under various
circumstances. First, the memory-modulating effects our
PEs could be detected in a simple model featuring them
as the sole predictor, which could therefore not have been
affected by collinearity. Further, adding our PE-regressor
to a model comprised of several control variables
significantly improved the model fit and confirmed the
assumed S-shaped relation to memory formation. This
speaks against an alternative account of our findings in
which the mere prediction of an aversive event, possibly
through increased attention to the predictive stimulus,
is sufficient to explain our observed effects on memory
formation.

It is also important to note that our findings go above
and beyond previous results showing an enhanced mem-
ory for novel or surprising stimuli (Strange and Dolan
2004; Cycowicz and Friedman 2007). We show here that,
rather than the novelty of a stimulus, the discrepancy
between expected and experienced consequences of a
stimulus affected its memorability. This is particularly
remarkable as these consequences were only revealed
after a stimulus had already disappeared, thus ruling out
a simple increase of attentional processing.

Previous behavioral findings could not differentiate
effects of negative and positive PEs in an aversive context
(Kalbe and Schwabe 2020) and studies on the role of
reward-related PEs yielded inconsistent findings as to
whether the direction of the PE matters for episodic
memory formation (Rouhani et al. 2018; Jang et al. 2019;
Ergo et al. 2020). Interestingly, we found that memory

effects depended on the sign of PEs, with negative PEs
being associated with better recognition performance
and larger positive PEs showing opposite, negative effects
on recognition performance.

The neural signature of positive PEs was clearly dis-
tinct from the neural underpinnings of negative PEs.
Positive PEs were associated with clusters of increased
activation in the left superior parietal lobule and the
right middle temporal gyrus and decreased activation of
the left supramarginal gyrus. The superior parietal lobe
has been linked to internal representations of sensory
inputs before (Wolpert et al. 1998) as well as to con-
tralateral sensorimotor coding of body parts (Wolbers
2003). As the electric shock was applied to the right leg
and increased superior marginal activation was observed
in the left hemisphere, the observed activity pattern
might point to increased processing of the electric shock.
Furthermore, the supramarginal gyrus has been previ-
ously associated with motor planning (Potok et al. 2019)
and unexpected somatosensory feedback perturbation
(Golfinopoulos et al. 2011). Thus, it is tempting to spec-
ulate that positive PEs resulted in more pronounced pro-
cessing of the (unexpected) electric shock, which dis-
tracted from the mnemonic processing of the encoded
stimulus and hence led to decreased subsequent recog-
nition memory.

Closely related but conceptually distinct from PEs is
prediction uncertainty. While PEs only become apparent
after an outcome has been revealed, uncertainty emerges
as soon as a potentially threatening stimulus is pre-
sented. We found that uncertainty about the possible
occurrence of a shock was associated with decreased
recognition performance. At the neural level, uncertainty
was paralleled by decreased activation in bilateral medial
occipital areas, possibly reflecting diminished visual pro-
cessing of stimuli associated with uncertain outcomes,
which might explain the uncertainty-related impairment
in recognition. In addition, uncertainty was associated
with reduced mPFC activation, a region implicated in
beliefs and the inference of hidden states (Yoshida and
Ishii 2006; Starkweather et al. 2018).

In summary, we provide behavioral and neural
evidence for a critical impact of aversive PEs on long-
term memory formation for events preceding the PE,
thereby bridging the traditionally separated fields of
associative learning and declarative long-term memory.
In addition to the magnitude of the PE, our results
show that the direction of the PE affects memory
formation. Whereas positive PEs reduced subsequent
memory, negative PEs promoted memory formation.
In particular for negative PEs, our results suggest a
qualitative shift in the contributions of large-scale neural
networks to memory formation. Negative PEs reduced
the processing of events in the schema network and
the medial-temporal encoding network both of which
are involved in “standard” long-term memory formation.
Instead, such schema-incongruent experiences might be
particularly well remembered because they are encoded
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distinctly from more mundane experiences, perhaps at
an exemplar-level, in a process that is likely mediated
through the salience network. Importantly, these mem-
ory enhancements and related neural changes could not
be explained by the prediction itself or mere changes
in physiological arousal, thus pointing to a rather “cog-
nitive” mechanism of memory enhancement. Although
the salience and front-parietal network changes related
to negative PEs might be considered as an extension of
established ideas about episodic memory formation,
in particular the opposite changes in MTL activity
related to memory formation at stimulus onset versus
PE occurrence suggests that potentially distinct mecha-
nisms might be involved in memory for high PE events.
These findings may have relevant implications for the
treatment of fear-related mental disorders, suggesting
that it might be beneficial to explicitly activate patients’
negative outcome expectations prior to the exposure
to the feared stimulus, as the absence of the feared
consequence in the therapeutic context should produce
strong fear-incongruent memories. More generally, our
results provide novel insights into the mechanisms
underlying the exceptional memory for episodes in the
context of unexpected events, such as meeting Barack
Obama in the supermarket.
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