
RESEARCH ARTICLE

Temporal Dynamics of Stress-Induced
Alternations of Intrinsic Amygdala
Connectivity and Neuroendocrine Levels
C. W. E. M. Quaedflieg*, V. van de Ven, T. Meyer, N. Siep, H. Merckelbach, T. Smeets

Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands

* conny.quaedflieg@maastrichtuniversity.nl

Abstract
Stress-induced changes in functional brain connectivity have been linked to the etiology of

stress-related disorders. Resting state functional connectivity (rsFC) is especially informa-

tive in characterizing the temporal trajectory of glucocorticoids during stress adaptation.

Using the imaging Maastricht Acute Stress Test (iMAST), we induced acute stress in 39

healthy volunteers and monitored the neuroendocrine stress levels during three runs of rest-

ing state functional magnetic resonance imaging (rs-fMRI): before (run 1), immediately fol-

lowing (run 2), and 30min after acute stress (run 3). The iMAST resulted in strong increases

in cortisol levels. Whole-brain analysis revealed that acute stress (run 2 - 1) was character-

ized by changes in connectivity of the amygdala with the ventrolateral prefrontal cortex

(vlPFC), ventral posterior cingulate cortex (PCC), cuneus, parahippocampal gyrus, and cul-

men. Additionally, cortisol responders were characterized by enhanced amygdala - medial

prefrontal cortex (mPFC) connectivity. Stress recovery (run 3 - 2) was characterized by al-

tered amygdala connectivity with the dorsolateral prefrontal cortex (dlPFC), ventral and dor-

sal anterior cingulate cortex (ACC), anterior hippocampal complex, cuneus, and

presupplementary motor area (preSMA). Opposite to non-responders, cortisol responders

were characterized by enhanced amygdala connectivity with the anterior hippocampal com-

plex and parahippocampal gyrus, and reduced connectivity with left dlPFC, dACC, and cul-

men during early recovery. Acute stress responding and recovery are thus associated with

changes in the functional connectivity of the amygdala network. Our findings show that

these changes may be regulated via stress-induced neuroendocrine levels. Defining stress-

induced neuronal network changes is pertinent to developing treatments that target abnor-

mal neuronal activity.

Introduction
Dysfunction of neuroendocrine regulation and impaired coping abilities have been implicated
in a variety of psychiatric disorders (e.g., depression, anxiety). Acute stress regulated by the
neuroendocrine system affects brain activity and, hence, influences the capacity to cope with
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stress. Glucocorticoids bind to mineralocorticoid and glucocorticoid receptors (MR and GR,
respectively) in the brain and exert a time [1] and spatial [2,3,4,5,6] specific mode of action, en-
abling the prioritisation of adaptive cognitive processes after having experienced a stressor. In
the immediate phase, stress elicits an emotional response expressed as subjective withdrawal
motivation as well as enhanced vigilance, perception and attentional focusing on threat-related
stimuli. This phase is focused on promoting survival. Subsequently, processes are initiated di-
rected at restoring homeostasis, such as emotion regulation [7,8]. To date, only few studies
have investigated the activation of distinct brain networks during acute stress and recovery
[9,10] and its relationship to neuroendocrine stress markers [11,12]. This is partly due to fact
that it is exceedingly challenging to effectively elicit neuroendocrine stress responses in the
constraints of a neuroimaging environment [13]. The paradigms used until now resulted in rel-
atively modest cortisol increases, making it difficult to address how glucocorticoids change
brain activation patterns after a stressor.

The functional connectivity of brain areas has been investigated using task absent (i.e., rest-
ing state) functional magnetic resonance imaging measurements (rs-fMRI); [14]. Resting state
functional connectivity (rsFC) is especially informative when studying the effects of post-stress
brain activation changes. rsFC parameters are not related to a task, making it possible to ex-
plore the diffuse effects of stress on the brain. Moreover, connectivity alterations following
stress and its relationship to neuroendocrine stress markers are particularly intriguing in light
of the suggested role of glucocorticoids in stress adaptation [15] and the etiology of stress-
related disorders [9,10].

The amygdala is one of the first brain areas to react to a stressor. It initiates the autonomic
nervous system (ANS) and hypothalamic-pituitary-adrenal (HPA) responses, thereby mediat-
ing the initial surge in vigilance and optimizing the detection of threats to homeostasis
[7,16,17]. Moreover, the amygdala is crucially involved in stress induced long-term adaptive re-
sponses such as enhanced memory consolidation [18,19,20]. The medial prefrontal cortex
(mPFC) is involved in mediating amygdala activity during regulation of autonomic and affec-
tive responses [21–25]. Previous neuroimaging studies demonstrated time specific enhance-
ment of the functional connectivity of the amygdala with PFC areas during the acute stress [9]
and recovery [10] phase.

The current study investigated the moderating role of glucocorticoids on the change in
amygdala rsFC during two phases that follow stress exposure: the acute and early recovery
phases. Stress was induced using the imaging Maastricht Acute Stress Test (iMAST) [26], a
neuroimaging stress task that has been shown to generate considerable subjective stress as well
as robust increases in glucocorticoid stress hormones (e.g., the primary human glucocorticoid
cortisol). Based on previous studies investigating inter-individual differences in stress reactivity
[9,27,28], we also compared cortisol responders and non-responders in their change of amyg-
dala rsFC and its relationship to neuroendocrine stress markers. It is hypothesized that the
acute stress phase is characterized by connectivity changes with areas involved in vigilance and
perception, while early recovery is characterized by connectivity changes with areas involved in
emotion regulation. Furthermore, amygdala connectivity with the mPFC is hypothesized to
differentiate between cortisol responders and non-responders.

Materials and Methods

Participants
The sample of the current study consisted of 42 right-handed, scanner-naïve participants (21
men, 21 women, mean age = 21.8 years, SD = 2.1; range: 18–35 years) see also [26]. All partici-
pants underwent a screening protocol assessing their physical and mental health, fMRI aptness,
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and handedness (see experimental procedures in S1 File). Test protocols were approved by the
standing ethics committee of the Faculty of Psychology and Neuroscience, Maastricht Univer-
sity. Participants signed a written informed consent form and were given a small monetary
reward.

Study procedure
An overview of the experiment is shown in Fig 1. The three resting state measures were part of
a larger study investigating the neural correlates of resilience (see S1 file) and in [26].

One and a half hour after arrival, participants received general information about fMRI
measures and were prepared for a 30min simulation scan. To reduce anticipatory anxiety for,
and familiarization with the scanner environment, participants were extensively trained in a
dummy scanner. Subsequently, participants were placed in the scanner and a baseline cortisol
sample (tMRI) was taken. The MRI session lasted for about 1.5h and consisted of the following
runs (in chronological order): resting state before stress induction (duration: 8min), implicit
emotion task (16min), iMAST including anatomical scan (15min), resting state immediate
after stress induction (8min), emotional working memory task (18min), and resting state
30min after stress induction (8min). During the resting state scan, a fixation point was pre-
sented. Participants were instructed to relax, not think of anything in particular and keep their
eyes open. In total, six saliva samples were collected during scanning (cf. supra).

The implicit emotion task was used as empirical localizer for left and right amygdala seeds.
Participants completed two blocks of the task in which they were asked to decide whether
84 pictures (International Affective Picture System; IAPS) [29]—subdivided into the categories
neutral, positive or negative—were situated in- or outdoors via a button press (see S1 file).

Stress induction equipment and procedures
The imaging Maastricht Acute Stress Test (iMAST) [26] consists of a 5min preparation phase
in which the task is explained and a 10min acute stress phase that includes several exposures
to cold pressor stress (i.e., stimuli of 2°C) and mental arithmetic challenges (i.e., counting
backwards as fast and accurate as possible in steps of 17 starting at 2043) along with social-
evaluative pressure (i.e., negative feedback). The iMAST protocol increases unpredictability
and uncontrollability by applying without prior warning one, two or three hot pulses (49°C) of
10s during each of the mental arithmetic trials, and by telling participants that the computer
would randomly choose the order and duration of the cold pressor and mental arithmetic trials
(see S1 file).

Fig 1. Overview of the study procedure. Abbreviation: iMAST: imaging Maastricht Acute Stress Test.

doi:10.1371/journal.pone.0124141.g001
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Subjective, neuroendocrine and physiological stress responses
Subjective stress. A 100 mm visual analogue scale (VAS) was used at the end of the imag-

ing session to assess subjective stress related to the iMAST. Participants had to specify their
level of agreement with the statement on how stressful they had felt during the iMAST (an-
chors: 0 =“not at all”; 100 = “extremely”).

Cortisol. Neuroendocrine stress prior to and in response to the iMAST was measured via
saliva samples that were obtained with synthetic Salivettes (Sarstedt, Etten-Leur, The Nether-
lands). Participants provided saliva samples immediately after having been placed in the MRI
scanner (tMRI), 5min before the iMAST (tpre-stress i.e., 25min after the tMRI sample was taken)
and 4 times after stress exposure (t+0, t+10, t+30, t+40 with reference to the end of the stressor).
For each participant individually, the Area Under the Curve with respect to increase (AUCi)
was calculated as a single measure of the total cortisol concentration in response to the iMAST
[30]. Two male participants did not provide enough saliva via the Salivettes to be analyzed.
One clear cortisol outlier (> 3SD above the mean) was excluded from all analyses. Thus, the
final sample consisted of 39 participants.

Based on previous work [31], delta cortisol increases (i.e., peak cortisol level after the
iMAST minus pre-stress cortisol level) of 1.5 nmol/l or larger were used to distinguish between
cortisol responders (n = 27) and non-responders (n = 12, see Fig 2B). The percentage of cortisol
responders did not differ by gender (χ2(1, N = 39) = 0.140, p = .71).

Physiological responses. Physiological measurements during MRI scanning included col-
lection of participants’ heart rate using a photoplethysmograph placed on the left index finger,
and respiratory data using a respiration belt placed around the chest. The physiological data
were transformed to power spectral densities (PSD) using Welch’s method (pwelch). We inves-
tigated whether PSD values differed between the three resting-state measurements of the fre-
quencies that coincided with the resolution of MRI scanning (TR = 2s, resulting in a frequency
window-of-interest 0.0075–0.25 Hz).

Fig 2. Neuroendocrine responses to the imaging Maastricht Acute Stress Test (iMAST). A)Cortisol response with respect to the imaging runs.B)
Cortisol responses separately for responders and non-responders. Values represent (untransformed) means ± SEM.

doi:10.1371/journal.pone.0124141.g002
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Data acquisition
Data were acquired on a 3-T Siemens Magnetom Allegra head scanner (Siemens Medical Sys-
tem, Erlangen, Germany). T1-weighted anatomical images were obtained using an MPRAGE
sequence with 192 slices and 1 x 1 x 1 mm voxel size covering the whole-brain (repetition time
(TR) = 2250 ms, echo time (TE) = 2.6 ms, flip angle = 9°)The anatomical images were obtained
from each participant during the iMAST. Functional T2�-weighted resting-state images were
acquired using a standard echo-planar imaging (EPI) sequence (TR = 2000 ms, TE = 30 ms,
flip angle = 90°, 32 slices, 180 volumes, 3 x 3 x 3 mm). Additionally, a negative slice tilt (30°)
was used to minimize inhomogeneity artefacts [32].

fMRI data pre-processing
The fMRI data were pre-processed and analysed using BrainVoyager QX 2.8 software (Brain
Innovation, Maastricht, the Netherlands) [33]. For functional datasets, the first two volumes of
each complete time series were discarded because of saturation effects. Pre-processing of the
functional data included removing the first two volumes, correction for slice time differences
using sinc interpolation, 3D motion correction using sinc interpolation, spatial smoothing
using a 4 mm full-width-at-half-maximum isotropic Gaussian Kernel and linear trend removal.
Individual functional datasets were co-registered with the 3D anatomical data, normalized in
Talairach space (1x1x1mm), and were averaged to create a group-based mask to exclude voxels
belonging to the ventricles or tissue outside of the brain for further analysis.

Selection of amygdala seed from implicit emotion task
To select amygdala seeds, we investigated the statistical contrast negative> neutral of the im-
plicit emotion task using a whole-brain random effects general linear model (RFX-GLM). The
boxcar for the sequences of image presentation was convolved using a two-gamma hemody-
namic response function to account for delay of the hemodynamic signal. The resulting con-
trast map was thresholded using a statistical (q(FDR) = 0.01) and cluster-size threshold (i.e.
minimum cluster size of 216 mm3 estimated by a stochastic procedure of the statistical map
that incorporated the estimated spatial smoothness of the target statistical map with 1,000
Monte Carlo simulations) [33]. We selected a homogeneous voxel cluster in the left (center co-
ordinate in Talairach space: x, y, z = -20.82, -5.27, -13.10; 253 mm3) and the right amygdala
(21.73, -6.28, -11.80; 305 mm3) as corresponding amygdala seeds (see Fig 3A).

Functional connectivity analysis
We used seed-based correlation analysis (SCA) to assess amygdala-based whole-brain func-
tional connectivity of the three resting-state measurements. The analysis was performed using
NeuroElf (an MR imaging analysis toolbox, www.neuroelf.net) and custom routines in Matlab
(Mathworks, Inc.). Data of the left and right amygdala were collapsed because the correlation
between the time courses was high for all three resting state runs (r>.61).

We first estimated amygdala-seeded functional connectivity for each participant separately
(first-level analysis), which then served as input to a multi-subject statistical analysis (second-
level) using an ANOVA model with between-subject factor cortisol responder type and within-
subject factor resting state run. Following previous studies and recommendations [34,35], we
removed a number of nuisance covariates from the fMRI signal using linear regression before
correlating the time series with the amygdala seed. The following parameters were included as
regressors: six 3D head motion parameters and their first derivatives, mean signal from the
ventricles and white matter, and the global signal. All covariates were Z-normalized to equalize

Amygdala Functional Connectivity following Stress

PLOS ONE | DOI:10.1371/journal.pone.0124141 May 6, 2015 5 / 16

http://www.neuroelf.net


variance. In addition, we added signal oscillations at a frequency above 0.1 Hz (sine-cosine
pairs) for low-pass filtering of the time series. Note that there is a debate as to what the global
signal represents [36], and whether regressing out the global signal is a valid approach [37] but
see [38]. We regressed out the global signal because our focus was on network-specific synchro-
nization of activity unrelated to unspecific global brain activity differences induced by the
stressor. After cleaning of the fMRI signal, we then correlated (Pearson’s r) the blood oxygen-
ation level dependent (BOLD) time course extracted from the amygdala seed with the cleaned
time series from all other brain voxels for each participant.

The first-level voxel-by-voxel correlation coefficients r were then transformed to normality
using Fisher’s Z normalization and entered into a second-level analysis to study rsFC changes
for acute stress and early recovery using a whole-brain random effects mixed-model ANOVA.
To summarize the data across all participants, we calculated multi-subject maps for each of the
resting state measurements using a mass-univariate (i.e., voxel-by-voxel) one-sample t-test
(thresholded for visualization using a statistical q(FDR) = .005; cluster-size threshold 216
mm3). The resulting F-maps were thresholded using a statistical threshold (p<.025, uncorrect-
ed) and corrected for multiple comparisons at the 3D cluster level (cluster-level threshold
p = 0.05, estimated minimum cluster-size = 216 mm3).

Connectivity changes as a function of time intervals around stress induction were post-hoc
analyzed using a Bonferroni corrected t-test on the differences scores: acute stress (run 2—run
1) and early recovery (run 3—run 2). Differences between cortisol responders and non-re-
sponders were analyzed using a mixed model with cortisol responder type as between-subject
factor. Additionally, Pearson’s bivariate correlations (Bonferroni corrected, p<.01) were com-
puted to investigate to what extent amygdala rsFC changes were linearly associated with sub-
jective and neuroendocrine stress responses.

Fig 3. Implicit emotion task and functional connectivity of the amygdala. A) The extraction of the amygdala seed. Statistical maps and amygdala ROI
selection for the contrast negative > neutral (FDR correction threshold of q = .001) overlaid on the anatomical average of the participants. B) Amygdala
resting state functional connectivity t-maps per run overlaid on the anatomical average of the participants (FDR correction threshold of q = .005).

doi:10.1371/journal.pone.0124141.g003
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Results

Subjective, neuroendocrine, and physiological stress responses
We used the iMAST as acute stressor to elicit subjective and neuroendocrine stress responses.
Subjects rated the iMAST as distressing on a 100mm VAS scale (M = 74.2, SEM = 3.24; see S1
Table). There were no differences in subjective stress between cortisol responders and non-re-
sponders (F(1,37) = 0.32, p = .57). Neuroendocrine stress responses were defined as salivary cor-
tisol concentration prior to and following the iMAST. For the entire sample, repeated measures
ANOVAs revealed significant main effects of Time (6 levels: tMRI, tpre-stress, t+0, t+10, t+30,
t+40min: F(2.30,85.04) = 4.94, p = .007) with a significant increase of cortisol up until t+40 (all
ps<.05; see S1 Table & Fig 2). Comparison of the saliva sample at placement (tMRI) with the
sample immediately before the iMAST (tpre-stress) demonstrated that lying in the scanner did
not induce any changes in cortisol (p>.99; see also 26).

The repeated measures ANOVAs with Time as within-subject factor for pulse and respira-
tory power spectral densities (PSDs) were non-significant for all frequencies in the window-of-
interest (ps>0.05, FWE-corrected) and for the low-frequency range (< 0.1 Hz; pulse: F (2, 72) =
1.66, p = 0.20; respiratory: F (2, 72) = 1.79, p = 0.17; see S1 Fig). This indicates that the observed
differences between the runs in functional connectivity are not due to differences in physiologi-
cal responses that are known to influence the BOLD signal in the resting state low-frequency
range [39,40].

Amygdala functional connectivity
We implemented SCA on the three runs of eight minutes of resting state data to investigate
how acute stress changes the amygdala connectivity during acute stress and early recovery (see
S2 Fig).

First, brain regions that were functionally coupled to the amygdala were identified for each
resting state run separately (one-sample t-tests, minimum cluster size of 216 mm3, see Fig 3B).
Regions showing significant functional connectivity with the amygdala in all three runs include
the lateral frontal pole, lateral orbitofrontal cortex, medial frontal cortex, anterior dorsal cingu-
late cortex, dorsal and ventral posterior cingulate cortex, hippocampus, hypothalamus, insula,
temporal pole, superior temporal gyrus, midbrain, and visual cortex. The majority of these re-
gions have been previously described in rsFC of the amygdala [10,41,42].

Amygdala functional connectivity during acute stress
To identify amygdala rsFC changes characterizing acute stress, we subtracted the baseline from
the reactivity measurement (run 2—run 1). A whole-brain analysis revealed that seven clusters
showed a significant effect of acute stress during acute stress. A reduced amygdala rsFC was
found with the left ventrolateral prefrontal cortex (vlPFC), left and right ventral posterior cin-
gulate cortex (vPCC), culmen, and bilateral cuneus while the amygdala rsFC was enhanced
with the right parahippocampal gyrus immediate after acute stress (see Table 1 for statistical
values).

The group contrast of cortisol responders versus non-responders revealed a significant
main effect in the mPFC, reflecting an opposing effect of stress on the amygdala rsFC by corti-
sol responders (enhanced) and non-responders (reduced) (see Fig 4A & Table 2).

Amygdala functional connectivity during recovery of stress
To identify amygdala rsFC changes characterizing early recovery of stress, we subtracted the re-
activity from the 30min rs-fMRI run (run 3—run 2). The whole-brain analysis revealed an
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effect on the early recovery of acute stress in six clusters. Early acute stress recovery was charac-
terized by reduced amygdala rsFC with the ventral anterior cingulate cortex (vACC), right dor-
solateral prefrontal cortex (dlPFC) and the left presupplementary motor area (preSMA) while
the amygdala rsFC was enhanced with the dorsal anterior cingulate cortex (dACC), right ante-
rior hippocampal complex consisting of the amygdala and hippocampus, and bilateral cuneus
(see Table 1).

The group contrast of cortisol responders versus non-responders revealed a significant
main effect in five areas reflecting the opposing effect of stress recovery on the amygdala rsFC.
Opposite to non-responders, cortisol responders were characterized by enhanced amygdala
connectivity with the anterior hippocampal complex and parahippocampal gyrus, and reduced
connectivity with left dlPFC, dACC, and culmen (see Fig 4B & Table 2 for statistical values).

Association of amygdala rsFC with neuroendocrine and subjective
measures
Pearson’s bivariate correlations (p<.01) were computed to investigate to what extent amygdala
rsFC was linearly associated with total neuroendocrine and subjective stress responses. Baseline
(run 1) amygdala—right dmPFC functional connectivity was negatively correlated with the
total cortisol concentration AUCi (r = -.54, p<.001). Additionally, amygdala—left dlPFC func-
tional connectivity immediately after stress (run 2) was negatively correlated with subjective
stress (r = -.49, p = .002; see Fig 5).

Discussion
The current study investigated how acute stress affects the temporal trajectory of the amygda-
la’s rsFC. Using the iMAST [26], we obtained strong increases in cortisol levels, enabling us to

Table 1. Amygdala functional connectivity results based on whole brain analysis of the two contrasts of interest: acute stress (run 2—run 1) and
early recovery (run 3—run 2).

Region Peak Voxel
coordinates

Statistical
values

Average
ConnectivityFisher’s Z

Description of results

Amygdala - x y z t (p) Run 1 Run 2 Run 3

Acute stress (run 2–1)

Ventrolateral Prefrontal Cortex(vlPFC) -55 22 24 3.60 (=.001) -.142 -.028 -.050 #
Ventral Posterior Cingulate Cortex (vPCC) 23 -35 7 -5.00 (<.001) .231 .076 .150 #

-25 -41 6 -3.98 (<.001) .203 .052 .127 #
Parahippocampal Gyrus 23 -29 -22 3.69 (=.001) .135 .260 .238 "
Cuneus -7 -83 9 4.50 (<.001) -.192 -.093 -.230 #
Culmen 11 -38 -23 4.19 (<.001) -.220 -.057 -.134 #
Recovery (run 3–2)

Dorsolateral Prefrontal Cortex (dlPFC) 26 25 36 3.55 (=.001) -.187 -.247 -.101 #
Ventral Anterior Cingulate Cortex (vACC) -1 25 24 3.40 (=.002) -.188 -.211 -.086 #
Dorsal Anterior Cingulate Cortex (dACC) -1 42 0 2.98 (=.005) .164 .088 .194 "
Presupplementary Moter Area (preSMA) -4 10 48 3.33 (=.002) -.297 -.342 -.233 #
Anterior Hippocampal Complex 29 4 -18 4.92 (<.001) .571 .507 .634 "
Cuneus -7 -83 9 -5.00 (<.001) -.192 -.093 -.230 "

Note: For each significant pairwise connection a description of the results are presented as either an increase (") or a decrease in connectivity strength

(#). The peak voxel coordinates are Talairach coordinates in mm.

doi:10.1371/journal.pone.0124141.t001
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Fig 4. Amygdala rsFC differences between cortisol responders and non-responders during the two
stress phases. A) Acute stress (run 2–1): The group contrast revealed an opposing effect of stress on the
amygdala—mPFC rsFC by cortisol responders (") and non-responders (#). B) Recovery (run 3–2). The group
contrast revealed an opposing effect of stress on the amygdala—dlPFC (shown in the figure), culmen and
dACC rsFC by cortisol responders (#) and non-responders (") while the opposite pattern was found for the
rsFC with the anterior hippocampal complex and parahippocampal gyrus responders (") and non-
responders (#).
doi:10.1371/journal.pone.0124141.g004

Table 2. Resting state functional connectivity results of the non-responder versus cortisol responder comparison during the two stress phases.

Region Peak Voxel Coordinates Statistical Values Average Connectivity Change
Fisher’s Z (SEM)

Amygdala - x y z t (p) Non-responders Responders

Acute stress (run 2–1)

Medial Prefrontal Cortex (mPFC) -1 53 15 -3.35 (=.002) -.130 (.04) .035 (.03)

Recovery (run 3–2)

Dorsolateral Prefrontal Cortex (dlPFC) -34 37 27 3.18 (=.003) .065 (.04) -.088 (.03)

Dorsal Anterior Cingulate Cortex (dACC) -4 7 39 3.36 (=.002) .142 (.05) -.046 (.03)

Anterior Hippocampal Complex 33 -29 -9 -4.01 (<.001) -.085 (.03) .066 (.02)

Parahippocampal Gyrus -19 -17 -15 -4.31 (<.001) -.077 (.04) .091 (.02)

Culmen -17 -41 -24 4.23 (<.001) .105 (.03) -.076 (.02)

Note: The peak voxel coordinates are Talairach coordinates in mm.

doi:10.1371/journal.pone.0124141.t002
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explore the role of neuroendocrine stress responses in amygdala based rsFC. A particular
strength of this study is that it deals with the role of glucocorticoids in the amygdala connectivi-
ty changes during two phases that follow stress exposure: acute stress and early recovery.

First, acute stress was characterized by enhanced rsFC between the amygdala and parahip-
pocampal gyrus. The parahippocampal gyrus has a strong functional connection with the
amygdala [43] and has been associated with appraisal and perceived stress [44,45]. Further-
more, the negative rsFC with the vlPFC, cuneus and culmen and the positive rsFC with the
PCC decreased immediately after acute stress. Our results fit with previous reports of increased
perfusion in the cuneus at rest immediately after exogenous cortisol administration [46] as
well as enhanced visual processing after acute stress [17,47] and during the perception of fear-
relevant images [48] optimizing the detection of threats. In line with this reasoning, we also
found decreased PCC connectivity during acute stress. This can be regarded as a sign of deacti-
vation in the default mode network (DMN), which is required for focused attention [49]. Thus,
decreased PCC connectivity likely promotes focused attention and optimizes threat detection.
Moreover, the decreased amygdala—PCC coupling during acute stress mirrors the findings of
Veer and colleagues [10] of an enhanced coupling during recovery, suggesting a dynamic con-
nectivity pattern modulating threat detection and attention when it is crucial.

Interestingly, during acute stress, the functional connectivity between the amygdala and
mPFC was in opposite direction in cortisol responders and non-responders, with an increased
connectivity in responders. This finding is seemingly at odds with the absence of a rapid effect
of exogenous cortisol administration on the functional connectivity of the amygdala and
mPFC during an emotional processing task [50]. One explanation for the disparity may be that
exogenous cortisol administration activates almost exclusively the HPA-axis while a psycho-
logical stressor also increases the release of other hormones like catecholamines [51,52]. Ani-
mal studies have shown that the mPFC activates behavioural and neuroendocrine systems to
acute stress [53]. Our results support the notion that the HPA response to stress and stress inte-
grative functions are regulated by forebrain circuits [5,54]. Our findings are also in line with
previous human studies demonstrating that the mPFC modulates the amygdala response dur-
ing regulation of autonomic and affective responses [18,21,22].

Second, recovery from the stressor was characterized by a reduced negative connectivity be-
tween the amygdala and the ventral ACC and preSMA and enhanced negative rsFC with the
cuneus. The vACC is thought to contribute to adaptive emotion regulation, and specifically, to

Fig 5. Association of amygdala rsFC with total cortisol and subjective stress. The left scatterplot illustrates the negative correlation between total
cortisol and strength of the baseline amygdala—right dmPFC connectivity. The right scatterplot illustrates the negative correlation between subjective stress
and strength of the reactivity amygdala—left dlPFC connectivity.

doi:10.1371/journal.pone.0124141.g005
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down-regulate limbic regions involved in generating emotional responses [55,56]. In line with
this, reduced connectivity between the amygdala and vACC has been found in stress-related
psychiatric disorders [57,58]. Additionally, we found that early recovery from the stressor was
characterized by changes in connectivity of the amygdala with the dACC and left dlPFC. These
changes in amygdala connectivity interacted with the cortisol response, as evidenced by our
cortisol responder versus non-responder analysis. Cortisol responders displayed reduced
amygdala—dlPFC and amygdala—dACC functional connectivity. The dACC is part of an in-
trinsic salience network that regulates adaptive behavior in response to environmental stimuli
that produce autonomic reactions [59–61]. Our results extend previous reports of enhanced
amygdala rsFC with the dACC during acute stress [9,11] by directly comparing cortisol re-
sponders and non-responders, and by directly comparing the rsFC immediately and 30min
after the stressor. Together, these findings suggest a dynamic connectivity pattern regulating
the autonomic response that is dependent on the stress phase. Participants with higher HPA-
axis reactivity displayed a reduced amygdala-left dlPFC functional connectivity. Functional
asymmetries in the PFC are said to be relevant to stress adaptation, with the left PFC being in-
volved in effective coping and preventing small stressors from becoming significant ones
[53,62,63]. Thus, the decreased amygdala—left dlPFC rsFC in cortisol responders might sug-
gest less effective coping and possibly increased vulnerability to stress.

Enhanced emotional memory consolidation is a well-known long-term adaptive response
after a stressor, and the connectivity between the amygdala and hippocampus is thought to reg-
ulate this effect [64,65]. In line with this, we found enhanced connectivity between the amygda-
la and anterior hippocampal complex during stress recovery. Interestingly, we found that this
change in rsFC connectivity was dependent on glucocorticoid levels, as demonstrated by an op-
posite direction of the functional connectivity between the amygdala and anterior hippocampal
complex in cortisol responders and non-responders. In cortisol responders, recovery was char-
acterized by enhanced amygdala rsFC with the left parahippocampal gyrus and right hippo-
campal complex. This is in accordance with the view that returning glucocorticoids reactivate
the hippocampus after initial stress exposure [24].

Finally, an investigation of the relation between baseline amygdala rsFC and neuroendo-
crine measure of stress revealed that enhanced amygdala—right dmPFC connectivity was asso-
ciated with a lower total increase of cortisol in response to the iMAST. This result is consistent
with the findings from rodent studies indicating the importance of the dmPFC in reducing
HPA activation [53]. Interestingly, subjective stress was inversely associated with amygdala—
left dlPFC reactivity rsFC. Immediately after acute stress, stronger amygdala—left dlPFC con-
nectivity was associated with less experienced stress. These findings are in agreement with the
idea that the connectivity between the left PFC and amygdala plays a central role in the down-
regulation of negative affect [66] and with the proposed role of asymmetrical activation of the
prefrontal cortex in stress adaptation via biased motivational processing.

Several issues deserve consideration. First, in light of the debate regarding a possible influ-
ence of tasks on the rsFC in a subsequent resting state measurement [67, 68] but see [69, 70],
we investigated the influence of an emotional working memory task on rsFC changes during
recovery. Per participant, the time course of the amygdala was extracted in the emotional work-
ing memory contrast negative> neutral using a whole-brain random effects general linear
model. The individual beta values from the amygdala in the emotional working memory task
were then correlated with the individual amygdala rsFC Fisher’s Z transformed correlation co-
efficients r of areas where a significant effect between run 2 and 3 was found (i.e., dlPFC, ven-
tral and dorsal ACC, presupplementary motor area, anterior hippocampal complex,
parahippocampal gyrus, cuneus, and culmen). All correlations were non-significant. Moreover,
by using the cortisol responder versus non-responder contrast, the influence of the emotional
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working memory task was curtailed, because all participants had to perform the task. Second,
the current study did not include a no-stress control condition. To further investigate the influ-
ence of task-engagement, and for future research aiming to investigate stress mechanisms in
the brain, a no-stress placebo version of the iMAST is needed. The no-stress placebo version
would be similar to the iMAST in terms of physical and mental load as well as its duration, but
without eliciting stress reactions [71]. Third, the current study investigated the early recovery
phase after stress induction controlled by non-genomic glucocorticoid actions. It would be in-
teresting to also investigate the delayed genomic effect of acute stress on changes in amygdala
connectivity by including resting state measurements during a longer period after the stress in-
duction. Glucocorticoids play an important role in both the onset and the termination of the
stress–response via the MR and GR. The membrane-bound MRmediates the onset of the stress
response while the GR terminates the stress response and facilitates behavioural adaptation [7].
Future studies may extend the current study’s test of time-dependent effects of glucocorticoid
actions by focusing on the different temporal profiles of the MR and GR (e.g., by pharmacolog-
ically blocking the GR or by studying MR polymorphisms that affect the functioning of the MR
receptor) and by investigating how these two receptor types mediate the effect of cortisol stress
responses on the resting state functional connectivity during the different phases after a stress-
ful experience. Finally, although the amygdala rsFC provides a valuable framework to study
the effects of stress, investigating in a more exploratory fashion the temporal dynamics of the
entire cortex could yield a comprehensive description of brain functional architecture post-
stress.

In sum, this study demonstrates that acute stress and early recovery thereof are associated
with changes in the functional connectivity of the amygdala network, which is most probably
regulated by stress-induced neuroendocrine levels. The early phase after acute stress is charac-
terized by changes in connectivity strength of the amygdala with areas involved in emotional
significance, threat detection and HPA-axis regulation. The period after removal of the stressor
was characterized by connectivity changes in areas involved in emotion regulation, coping, and
suppression of negative affect. Dysfunction of the HPA-axis regulation and impaired coping
abilities have been implicated in a variety of psychiatric disorders (e.g., depression, anxiety).
Defining stress-induced neuronal network changes is highly relevant for developing treatments
that target abnormal neuronal activity. Our results suggest that the left dlPFC might be a target
area of brain activity based treatments to promote recovery and stress adaptation. Moreover,
repeated resting-state assessments may prove valuable for further investigations of intrinsic
post-stress brain activation changes so as to further delineate the temporal trajectory during
which cortisol affects specific brain connectivity patterns.

Supporting Information
S1 Fig. Power spectral densities (PSDs) of the physiological responses. Upper panel: Mean
PSDs of the pulse rate (black line) and respiration (grey line) across all participants and condi-
tions. For visualization the frequency range is truncated to 1 Hz. Grey area represents the fre-
quency window coinciding with the scanner resolution of TR = 2 s (i.e., 0–0.25 Hz). Lower
panels: Mean (± SEM area) PSDs of pulse rate (left) and respiration (right) for the scanner-
relevant frequency range of the three resting-state measurements. ANOVAs across the plotted
frequencies were not significant (all corrected ps>0.05).
(TIF)

S2 Fig. Overlap between amygdala resting state functional connectivity maps. The overlap
with the baseline measurement (i.e., run 1) is shown in purple in the pairwise maps. The amyg-
dala seed used for the analysis is drawn in white. Statistical maps (FDR correction threshold of
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q = .005) are overlaid on the anatomical average of the participants. In the coronal view, the left
side of the brain corresponds to the right hemisphere and vice versa.
(TIF)
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S1 Table. Means (± SEM) of subjective stress and cortisol (untransformed values). Grey
areas indicate values used for calculation of the area under the curve (AUCi).
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