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Previous work has shown that both declarative and non-declarative strategies can be engaged in
probabilistic classification learning. With respect to the neural correlates of these strategies, earlier
studies have focused on the classification process itself. In the present experiment, we asked whether
the feedback for classification performance is processed differently by declarative and non-declarative
learners. We recorded event-related potentials (ERPs) while participants performed a modified version
of the weather prediction task, a well-known probabilistic classification learning task. ERP analysis
focused on two ERP components typically associated with feedback processing, the feedback-related
negativity (FRN) and the P300. FRN amplitude was not affected by learning strategy. The P300,
however, was more pronounced in declarative learners, particularly at frontal electrode site Fz. In
addition, P300 topography was different in declarative learners, with amplitude differences between
negative and positive feedback being more pronounced over the frontal than the parietal cortex.
Differences in feedback processing between groups were still seen after declarative learners had
switched to a non-declarative strategy in later phases of the task. Our findings provide evidence for
different neural mechanisms of feedback processing in declarative and non-declarative learning. This

difference emerges at later stages of feedback processing, after the typical time window of the FRN.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past 15 years, evidence has accumulated that differ-
ent memory systems contribute to probabilistic (classification)
learning (PCL) which requires the incremental acquisition of
probabilistic cue-outcome associations. Amnesic patients with
(suspected) hippocampal or diencephalic damage have been
shown to perform normally during initial learning of PCL tasks,
but are impaired relative to control subjects when learning
progresses, indicating that the declarative memory system does
not contribute notably to early classification learning (Knowlton,
Mangels, & Squire, 1996a; Knowlton, Squire, & Gluck, 1994). In
contrast, patients with dysfunction of the basal ganglia (BG),
which are involved in non-declarative learning, show reduced
probabilistic learning from the beginning of the task (Knowlton
et al., 1996b; Knowlton et al., 1996a).

Poldrack et al. (2001) examined the interplay of the medial
temporal lobe (MTL)- and BG-based memory systems in PCL
applying functional magnetic resonance imaging (fMRI) in healthy
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subjects performing the so-called weather prediction task (WPT).
The WPT has been used in a variety of studies to investigate the
neural correlates of declarative and non-declarative learning and
memory systems (e.g., Gluck, Shohamy, & Myers, 2002; Knowlton
et al., 1994; Poldrack et al., 2001). On each trial, one to three out of
four different cue cards are presented and subjects have to classify
them into one of two weather categories (rain or sun) based on trial-
by-trial feedback. Three different learning strategies have been
described that participants apply to solve the WPT: the one-cue
strategy, the singleton strategy, and the multi-cue strategy (e.g.,
Gluck et al., 2002; Shohamy, Myers, Onlaor, & Gluck, 2004b). The
responses of subjects using a one-cue strategy are based on the
presence or absence of a particular cue card on a single trial.
Participants who use the singleton strategy concentrate on those
trials in which only one cue card is presented (singletons) and
respond by chance on the other trials. Finally, subjects using a multi-
cue strategy take the combination of all cue cards into account when
making their choice. The one-cue strategy and the singleton strategy
can be regarded as declarative learning strategies because subjects
explicitly learn associations between two stimuli (cue card and
outcome) and thus gain knowledge that can be consciously and
intentionally recollected, which is a key characteristic of declarative
memory (e.g., Cohen & Squire, 1980; Knowlton et al., 1996a; Reber &
Squire, 1994; for a review, see Gabrieli, 1998). On the contrary,
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gradual learning over many trials which is typical for the multi-cue
strategy can be considered as a form of non-declarative memory
because it does not require explicit knowledge and conscious
awareness (Knowlton et al., 1996a; Reber & Squire, 1994; for a
review, see Gabrieli, 1998). In line with this distinction, patients
with BG dysfunction have been shown to engage “declarative”
strategies more often than healthy controls (Shohamy et al.,
2004a; Shohamy et al., 2004b). Moreover, a recent neuroimaging
study showed that one-cue strategies are associated with hippo-
campal activity, whereas multi-cue strategies are related to striatal
activity (Schwabe & Wolf, 2012). A shift from hippocampus-based
one-cue to striatum-based multi-cue learning was paralleled by a
decrease in explicit task knowledge, thus providing further support
for the consideration of one-cue and multi-cue strategies as declara-
tive and non-declarative, respectively. The concepts of declarative
and non-declarative learning in PCL thus seem to share important
features with the concepts of explicit and implicit memory, respec-
tively (Poldrack et al., 2001; Reber, Gitelman, Parrish, & Mesulam,
2003; for a review, see Shanks & St.John, 1994).

To date, the neural correlates of PCL were mostly examined
by analyzing neural activity during the decision process. For
example, Poldrack et al. (2001), Poldrack, Prabhakaran, Seger,
and Gabrieli (1999) showed that healthy participants relied more
on the MTL region early in the WPT, while later in learning the BG
were more strongly involved. These results are in line with the
finding that healthy subjects often switch their learning strategy
from more declarative to non-declarative during the WPT (e.g.,
Shohamy et al., 2004b), corroborating the concept of procedur-
alization (Anderson, 1982). However, it has been shown that the
need to process feedback strongly affects the type of learning
(declarative or non-declarative) and thus the memory systems
involved. Patients with Parkinson’s disease show better perfor-
mance in a non-feedback version than in a feedback version of
PCL tasks (Shohamy et al., 2004a), suggesting that a feedback
variant engages the BG more strongly. However, as outlined
above, both declarative and non-declarative approaches were
seen in a feedback variant of a classification task in healthy
subjects (e.g., Shohamy et al., 2004b). It is thus conceivable that
declarative learners (DL) and non-declarative learners (NDL)
differ in the way they process feedback in PCL tasks.

Feedback processing is often investigated by means of event-
related potentials (ERPs). In particular, the feedback-related
negativity (FRN) which occurs between 200 and 300 ms after
performance feedback is typically more pronounced for negative
feedback (e.g., Miltner, Braun, & Coles, 1997) and has been
suggested to reflect dopaminergic input to the anterior cingulate
cortex (ACC), coding a reward prediction error (e.g., Bellebaum &
Daum, 2008; Gehring & Willoughby, 2002; Hajcak, Moser,
Holroyd, & Simons, 2007; for a review, see Holroyd & Coles, 2002).

The P300, which peaks between 300 and 500 ms after stimulus
presentation, is another ERP component that is modulated
by feedback- or reward-related variables such as valence, prob-
ability or magnitude. The findings concerning the type of mod-
ulation are, however, contradictory (Bellebaum & Daum, 2008;
Bellebaum, Kobza, Thiele, & Daum, 2011; Bellebaum, Polezzi, &
Daum, 2010; Frank, Woroch, & Curran, 2005; Hajcak et al., 2007;
Sato et al,, 2005; Yeung & Sanfey, 2004). The neural source of the
P300 is less clear than that of the FRN (e.g., Fushimi, Matsubuchi,
& Sekine, 2005; Ludowig, Bien, Elger, & Rosburg, 2010; for a
review, see Linden, 2005). The longer latency compared to the
FRN suggests that it reflects more declarative aspects in the
context of feedback processing.

The present study aimed to systematically investigate
the neural correlates of feedback processing in declarative and
non-declarative learning using electroencephalography (EEG).
Subjects completed a modified version of the WPT (e.g., Gluck

et al., 2002; Knowlton et al., 1994). We expected declarative and
non-declarative learners to differ on those aspects of feedback-
related processing that are reflected by the P300 and FRN.
Specifically, we expected higher FRN amplitudes in subjects
who use non-declarative learning strategies to solve the WPT
compared to participants who apply declarative strategies. The
P300, in turn, was expected to be more pronounced in declarative
learners.

2. Material and methods
2.1. Participants

Fifty-six volunteers (32 females) with a mean age of 25.20 years (SD=3.71)
participated in the study. Exclusion criteria for study participation were a history
of psychiatric and neurological disorders. One participant who reported a former
bacterial meningitis was initially not excluded, but as he performed below chance
level on the probabilistic classification task, he was excluded for analysis of
performance-matched subgroups (see below for details). All participants gave
written informed consent before the experiment was started. The study was
approved by the Ethics Committee of the Faculty of Psychology of the Ruhr
University Bochum, Germany.

2.2. The weather prediction task

2.2.1. Task procedure of the weather prediction task

Participants completed a modified version of the WPT (e.g., Gluck et al., 2002;
Knowlton et al., 1994), while EEG was constantly recorded. Subjects were seated
in front of a computer monitor and were asked to learn probabilistic classifications
based on trial-by-trial feedback. More specifically, participants classified a
stimulus set consisting of one to three cue cards as predicting one of two weather
conditions (rain vs. sun) on each trial. Within 5000 ms after stimulus presentation,
subjects had to respond by pressing a left (rain) or right (sun) response button.
Afterwards, the chosen category was highlighted by a red circle and stayed on the
computer screen for 500 ms. Following a delay of 500 ms, participants received
feedback as to whether their prediction was correct or wrong (happy or sad face,
respectively). The feedback stimulus was shown for 1000 ms (see Fig. 1 for details
of the task). The stimuli consisted of one to three tarot cue cards (cue card 1:
squares, cue card 2: diamonds, cue card 3: circles, cue card 4: triangles) (see Fig. 1,
top right). The whole experiment took approximately 45 min.

As in the study by Gluck et al. (2002), fourteen stimulus patterns were used.
The different patterns appeared with different frequencies throughout the
experiment and each pattern was associated with a fixed probability of sun and
rain outcomes (see Table 1 for details) (cf. Gluck et al., 2002).

Participants performed four blocks of trials. Each block was followed by a
break. Participants could individually decide the length of the breaks. Most
subjects continued with the next block after 10-20s. Each block consisted of
100 trials, yielding 400 trials in total for each participant. Participants’ responses
and the accompanying outcomes were recorded and performance accuracy was
determined for each individual trial. Responses were scored as correct if the
category (rain or sun) with the higher probability for the particular stimulus
pattern was chosen (cf. also Gluck et al., 2002).

2.2.2. Strategy analysis
As already explained in the introduction, three different learning strategies
can be used to solve the WPT: the one-cue strategy, the singleton strategy, and the
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Fig. 1. Learning trials and setup of the task: On each trial, one to three cue cards
were presented. Participants chose between two weather categories (rain or sun)
and received feedback on prediction accuracy. Top right: The stimuli consisted of
one to three tarot cue cards (cue card 1: squares, cue card 2: diamonds, cue card 3:
circles, cue card 4: triangles).
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Table 1
Probability structure of the WPT (according to Gluck et al. (2002)).

Pattern Cue Cue Cue Cue P P
card 1 card 2 card 3 card 4 (pattern) (rain|pattern)

A 0 0 0 1 14.0 143
B 0 0 1 0 8.0 37.5
C 0 1 0 0 9.0 111
D 0 1 0 1 8.0 62.5
E 0 1 1 0 6.0 16.7
F 0 1 1 1 6.0 50.0
G 0 1 1 1 4.0 25.0
H 1 0 0 0 14.0 85.7
I 1 0 0 1 6.0 50.0
J 1 0 1 0 6.0 833
K 1 0 1 1 3.0 333
L 1 1 0 0 9.0 88.9
M 1 1 0 1 3.0 66.7
N 1 1 1 0 4.0 75.0

1 means that a cue card was present. 0 means that a cue card was absent. The
overall probability of rain (summing P(pattern) x P(rain|pattern) for all pattern)
was 50%.

multi-cue strategy (e.g., Gluck et al., 2002; Shohamy et al., 2004b). While the first
two are based on explicit associations between single cue cards and outcomes (see
Section 1), the multi-cue strategy is more non-declarative in nature and the
subjects applying this strategy take the whole configuration of cue cards into
account when making their choice.

For learning strategy classification, we followed the analysis procedure described
by Gluck et al. (2002). We constructed “ideal” data for each learning strategy and
related participant’s individual response profiles to these ideal profiles. The ideal data
for each learning strategy reflected a choice pattern which would be expected if a
subject was exclusively following this particular learning strategy. We quantified the
fit of the different strategy models to individual subjects’ choice data applying the
following mathematical algorithm introduced by Gluck et al. (2002):

#sun_expectedp y—#sun_actualp)?
P p ,
> p(#presentationsp)®

Score for Model M =

(P=pattern A-..N; #presentationsp is the frequency with which pattern P occurs;
#sun_expectedpy is the frequency of sun choices expected to pattern P under model M;
#sun_actualp is the actual number of sun choices which the participant made to
pattern P).

The result was a score between 0 and 1 for each learning strategy: The smaller the
value, the better the fit to a particular learning strategy. The learning strategy which
provided the best fit of choice performance was determined for each individual
subject in consecutive blocks of 100 trials. This procedure yielded four classifications
of learning strategy for each participant. Based on the analysis of the individual choice
patterns in each block, participants were assigned to two groups: declarative learners
(DL) and non-declarative learners (NDL). It is known that the processing of perfor-
mance feedback is strongly affected by feedback expectation (Bellebaum & Daum,
2008; Hajcak et al., 2007; Holroyd, Krigolson, Baker, Lee, & Gibson, 2009; Holroyd &
Krigolson, 2007; Pfabigan, Alexopoulos, Bauer, & Sailer, 2011). The assignment to the
group of DL or NDL was therefore only based on the fits for the multi-cue and one-cue
strategies because only for these strategies reward expectations can be formed for
each individual trial. In contrast, singleton learners have specific expectations only for
a minority of trials involving only a single cue card. Thus, the DL in the present study
predominantly engaged in a one-cue strategy, while the NDL predominantly engaged
in a multi-cue strategy.

2.2.3. Post-experimental questionnaire

After completion of the WPT, participants answered six questions assessing
declarative knowledge about the cue-outcome associations in the WPT. Four
questions required probability estimations of the outcome “sun” when only one of
the four cue cards had been presented on the computer screen. Probability
estimations in a range of + 15% of the exact probabilities were scored as correct.
The two remaining questions asked for the cue card with the highest probability of
sun and rain, respectively. The sum of correct answers served as a measure of
declarative knowledge about the WPT.

2.3. EEG recording

During the experiment, EEG was recorded from 30 scalp sites with silver—
silver chloride electrodes mounted in an elastic cap: F7, F3, Fz, F4, F8, FT7, FC3,
FCz, FC4, FT8, T7, C3, Cz, C4, T8, TP7, CP3, CPz, CP4, TPS, P7, P3, Pz, P4, P8, PO7, PO3,
POz, PO4, PO8, according to the International 10-20 system. We used a Brain
Products BrainAmp Standard Amplifier (Brain Products, Munich, Germany) and
the appropriate software at a sample rate of 500 Hz. The average of two electrodes

placed on the left and right mastoids served as reference for EEG recordings. A
ground electrode was placed at Fpz. Stimulus timing was controlled by Presenta-
tion Software (Neurobehavioural Systems; http://www.neuro-bs.com). Electrode
impedance was kept below 10 kQ.

2.4. Data analysis

2.4.1. EEG data analysis

We analyzed EEG data off-line using the Brain Vision Analyser Software
Package (Brain Products, Munich, Germany) and MATLAB (Mathworks, Natick,
Massachusetts, USA). EEG signals were band-pass filtered with cutoffs of 0.5 and
40 Hz. To remove vertical eye movement and blink artifacts, an independent
component analysis (ICA) was performed on the EEG data of each individual
subject (Lee, Girolami, & Sejnowski, 1999). ICA results in an unmixing matrix
which decomposes the EEG signal into a sum of temporally independent and
spatially fixed components with the number of components matching the number
of channels. Each subject’s 30 components were screened for maps which might
represent artifacts caused by eye movements and blinks. Candidate components
were characterized by a symmetric, frontally positive topography. In addition,
components reflecting blink artifacts typically explain a large proportion of the
variance. One candidate component was then removed from the raw data by
performing an ICA back transformation. Back-transformed data were then checked
via visual inspection for remaining artifacts, and only if numerous artifacts were
still seen, a second component was removed. To analyze feedback-related ERPs,
segments were created from 200 ms before up to 800 ms after the presentation of
positive or negative feedback, followed by a baseline correction relative to the
200 ms preceding the feedback stimulus. Finally, an automatic artifact detection
excluded trials with data points exceeding an absolute amplitude value of 100 pV
before single subject averages for positive and negative feedback were created.

FRN analysis was based on data from electrode Fz where it was most
pronounced. FRN amplitude was defined as the maximum negative peak ampli-
tude in the time window between 200 and 350 ms after feedback presentation,
relative to the preceding positive peak amplitude between 150 ms after feedback
onset and the latency of the negative peak. Although the FRN for positive feedback
was markedly reduced, the algorithm identified a small relative negativity in the
above mentioned time window also in this condition for all but one subject, for
whom FRN amplitude was set to 0 uV. For the P300, the mean amplitude of the
ERPs in the time window between 350 and 450 ms after feedback presentation
was analyzed at Fz and Pz in order to explore strategy effects on P300 topography.

2.4.2. Statistical design and analysis

Behavioural and EEG data were analyzed with an analysis of variance
(ANOVA). If sphericity was violated, Greenhouse-Geisser corrections were
applied. For ANOVA results, we only report main effects and interactions involving
the between-subjects factor GROUP (DL vs. NDL). Furthermore, correlation
analyses (with Pearson’s bivariate correlation) were performed between measures
of learning strategy, derived from the response pattern (see above) or the post-
experimental questionnaire, and ERP measures of feedback processing. For all
analyses, the p-value was set to p <.05. For the resolution of significant two- or
three-way interactions, post-hoc one-tailed t-tests for dependent or independent
samples were performed.

3. Results

The main aim of the present study was to compare feedback
processing between subjects using a declarative learning strategy
and those using a non-declarative learning strategy in PCL.
Strategy analyses revealed that most subjects engaged a non-
declarative learning strategy and that the proportion of NDL
further increased from block 1 to block 4. For the first 100 trials,
we found that a one-cue model provided the best fit for 22
subjects (DL) (mean age=25.3 years, SD=3.7, 12 females),
whereas a multi-cue model provided the best fit for 34 partici-
pants (NDL) (mean age=25.2 years, SD=3.8, 20 females). For the
last 100 trials, only 7 DL remained, indicating a shift from a
declarative to a non-declarative learning strategy in 15 partici-
pants (referred to as “new NDL” in the following). The opposite
shift - from a non-declarative to a declarative strategy — did not
occur. With respect to the ERP data, we thus focused on the first
block of trials in the first step of analysis, comparing feedback-
related ERPs in DL and NDL. Accordingly, behavioural data were
also compared between these groups of subjects. In the second
step, ERP data from the last block of trials were considered and
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compared with ERPs from the first block, both for subjects who
switched strategy and for subjects who applied a non-declarative
strategy throughout.

3.1. Behavioural data

Fig. 2 illustrates the learning performance of the 22 DL
(defined according to performance in the first block) and the 34
NDL (who did not change their learning strategy during the
course of the task) across the four blocks. An ANOVA with the
within-subjects factor BLOCK (1-4) and the between-subjects

90%
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Fig. 2. Behavioural data: Percentage of correct choices in the four blocks for the 22

DL and the 34 NDL (defined based on performance in the first block). Error bars
represent SEs.
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factor GROUP (DL vs. NDL) revealed a main effect of BLOCK
(linear trend: F(1,54)=51.169, p<.001). The main effect of
GROUP did not reach significance (p=.141). A significant
GROUP x BLOCK interaction (F(2.52, 136.26)=7.175, p<.001)
indicated that the NDL group performed significantly better than
the DL group in the first block (t(54)=3.932, p <.001), whereas
there were no group differences in the following blocks (all
p>.128), presumably because most DL changed their strategy
during the course of the experiment.

The groups of DL and NDL did thus not only differ in the
learning strategy, but also in overall learning success and -
consequently - the frequency of positive and negative feedback.
DL received positive feedback on 62.64% of the trials on average,
whereas NDL received positive feedback on 66.15% of the trials in
the first block, (£(30.998)=2.068, p=.047). Although the differ-
ence was numerically small, it cannot be excluded that outcome-
related ERPs to some extent also reflect the between-group
differences in performance accuracy and/or reward frequency
(see Holroyd, Nieuwenhuis, Yeung, & Cohen, 2003 for a modula-
tion of the FRN by reward frequency). We thus created
performance-matched subgroups by excluding an outlier with
very low performance accuracy from the DL group and excluding
the 13 best NDL, yielding two groups of 21 subjects each (DL:
mean number of correct responses in the first block=73.61,
SD=9.14; NDL: M=77.53, SD=6.12; p=.110). The 21 remaining
DL received positive feedback on 63.19% of the trials on average,
whereas the 21 remaining NDL received positive feedback on
64.48% of the trials in the first block (£(30.296)=0.762, p=.452),
i.e., the performance-matched groups did not differ significantly
in the frequency of positive and negative feedback. All ERP
analyses for the first block reported below are based on the
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Fig. 3. ERPs at electrode sites Fz (left) and Pz (right) (A): Grand average feedback-locked ERPs following positive (pos. FB) and negative feedback (neg. FB) in the first block
for the performance-matched subgroups. The time window for the FRN is shaded in dark grey. The time window for the P300 is shaded in light grey. (B) Topographic maps
for positive and negative feedback processing in the time window of the P300 for the performance-matched groups.
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performance-matched subgroups. The analyses involving all sub-
jects are provided as supplemental material.

3.2. Post-experimental questionnaire

Analysis of the post-experimental questionnaire did not reveal
significant differences in the number of correct answers between the
22 DL from the first block (M=3.64, SD=1.68) and the 34 NDL
(M=3.38, SD=1.48) (p=.554). It has to be noted, however, that the
questionnaire assessed declarative knowledge about stimulus-
outcome associations after completion of the WPT. Differences in
declarative knowledge are thus more likely to occur between subjects
applying different strategies at the end of the task. Despite differences
on the descriptive level, a one-way ANOVA did not reveal significant
differences concerning the number of correctly answered declarative
questions between the 34 NDL (see above) who applied a non-
declarative strategy during the whole task, the 15 subjects who
switched from a more declarative strategy to a more non-declarative
strategy (M=3.47, SD=1.89), and the 7 participants (M=4.00,
SD=1.16) who learned in a declarative manner from the beginning
to the end of the experiment (p=.638).

3.3. ERP data

3.3.1. FRN in the first block

Fig. 3A (left) shows the ERPs after positive and negative
feedback in the first block at electrode Fz for the performance-
matched groups of 21 DL and 21 NDL. FRN amplitude of DL after
positive feedback was —3.52 uV (SD=2.22) and after negative
feedback —7.30 uV (SD=3.16). NDL showed an FRN amplitude of
—3.82 uV (SD=3.31) after positive feedback and of —7.43 pv
(SD=4.79) after negative feedback.

An ANOVA on FRN amplitude with the within-subjects factor
FEEDBACK TYPE (positive vs. negative) and the between-subjects
factor GROUP (DL vs. NDL) revealed a main effect of FEEDBACK
TYPE (F(1,40)=35.280, p < .001) with higher FRN amplitudes after
negative than positive feedback, whereas the main effect of
GROUP and the interaction GROUP x FEEDBACK TYPE did not
reach significance (both p > .808).

For the analysis of all 56 subjects (34 NDL vs. 22 DL), the same
pattern of findings was found, with only the main effect of
FEEDBACK TYPE reaching significance (see Supplementary Fig.
S1 (left) and Supplementary Table S1). The lower p-value for the
main GROUP effect compared to the analysis of the performance-
matched subgroups (p=.120) appears to indicate, however,
that the frequency of positive and negative feedback had a greater
influence on the FRN amplitude than the specific learning
strategy.

3.3.2. P300 in the first block

Fig. 3A illustrates the ERPs after positive and negative feedback
in the first block of trials at electrodes Fz (left) and Pz (right) for
the 21 DL and the 21 NDL (see Table 2 for P300 amplitudes).
ANOVA with the within-subjects factors FEEDBACK TYPE (positive
vs. negative) and ROW (frontal vs. parietal) and the between-
subjects factor GROUP (DL vs. NDL) revealed a significant main
effect of FEEDBACK TYPE (higher amplitudes for negative feed-
back; F(1,40)=31.397, p <.001), while the main effects of ROW
and GROUP did not reach significance (both p > .129). The interaction
GROUP x FEEDBACK TYPE was not significant (p=.833). The two-way
interaction GROUP x ROW (F(1,40)=4.335, p=.044) and the three-
way interaction GROUP x FEEDBACK TYPE x ROW (F(1,40)=5.223,
p=.028) reached significance. Compared to NDL, DL showed higher
frontal P300 amplitudes (£(40)= —1.897, p=.033), while no signifi-
cant group difference emerged for parietal P300 amplitudes

Table 2
Means with standard deviations (in brackets) for P300 mean amplitudes (in pV) in
the first block.

Fz Pz
Group Pos. feedback Neg. feedback Pos. feedback Neg. feedback
21 NDL 9.68 (4.00) 13.35 (5.40) 12.15 (4.26) 14.48 (5.00)
21 DL 12.80 (6.52) 17.41 (8.97) 13.85 (4.30) 15.71 (6.58)

(p=.167). Furthermore, P300 amplitude differences between negative
and positive feedback were similarly pronounced at frontal (£(20)=
—6.402, p<.001) and parietal electrodes in NDL (t(20)= —5.008,
p <.001). In DL, significantly larger P300 amplitudes for negative than
positive feedback also emerged at both electrode sites, but were more
pronounced at Fz (£(20)= —3.960, p <.001) than Pz (£(20)= —2.127,
p=.023; see also Fig. 3B for topographies of the P300). The nature of
the above mentioned three-way interaction also becomes apparent
when comparing P300 amplitudes between electrode sites Fz and Pz,
separately for positive and negative feedback and for DL and NDL (see
also Table 2). While for NDL parietal amplitudes are generally higher
(positive feedback: t(20)=—7.216, p <.001; negative feedback:
(20)= —2.880, p=.005), this pattern, albeit not significant, is seen
only for positive feedback in DL (p=.150). For negative feedback, a
strong trend for a higher frontal P300 emerges (p=.054).

ANOVA for 34 NDL vs. 22 DL (see Supplementary Fig. S1 and
Supplementary Table S2) revealed a similar pattern of results
indicating that the three-way interaction existed independently of
performance matching. Furthermore, significant main effects of FEED-
BACK TYPE and GROUP emerged for the analysis of all subjects.

3.3.3. Comparison of P300 in the first and last block

To further examine the relationship between learning strategy
and feedback processing, ERPs in the first and last block of the
WPT were analyzed in the 15 participants who switched their
learning strategy during the experiment (named “new NDL") and
compared to ERPs in those 34 subjects who applied a non-
declarative strategy throughout the whole experiment (NDL).
For this analysis, all 34 NDL were considered because there were
no performance differences between NDL and DL in the last
learning block and because the three-way interaction GROUP-
x FEEDBACK TYPE x ROW existed for the analyses of all 56
subjects as well as for the performance-matched subgroups.

Fig. 4 illustrates the ERPs after positive and negative feedback in
the first block (Fig. 4A) and last block (Fig. 4B) at electrodes Fz and Pz
for the 34 NDL and the 15 “new NDL” (see Table 3 for P300
amplitudes). An ANOVA with the factors mentioned above and the
additional factor BLOCK (1 vs. 4) yielded significantly higher P300
amplitudes after negative than positive feedback (F(1,47)=71.526,
p<.001) and at parietal compared to frontal electrodes (F(1,47)=
4543, p=.038). In addition, a significant main effect of BLOCK
emerged (F(1,47)=46.537, p <.001), indicating higher P300 ampli-
tudes at the beginning of the task. The 15 “new NDL” showed overall
higher P300 amplitudes than the 34 NDL (F(1,47)=6.149, p=.017).
Again a significant three-way interaction GROUP x FEEDBACK TYPE-
x ROW emerged (F(1,47)=6.245, p=.016). All other interactions
with the factor GROUP did not reach significance (all p >.136). The
resolution of the three-way interaction revealed a similar pattern as
for the analysis of the ERPs from the first block. Although the
comparison of P300 amplitudes for positive and negative feedback
(pooled over the first and last block) yielded highly significant
differences for electrode sites Fz and Pz in both NDL (Fz:
33)=—-6.300, p<.001; Pz: t(33)=—7.225, p<.001) and DL (Fz:
t(14)= —5.431, p <.001; Pz: t(14)= —5.122, p <.001), the descriptive
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Fig. 4. ERPs at electrode sites Fz (left) and Pz (right): Grand average feedback-locked ERPs following positive (pos. FB) and negative (neg. FB) feedback in the first block
(A) and the last block (B) for the 34 NDL and the 15 “new NDL” who changed strategy from the first to the last block. The time window for the P300 is shaded in light grey.

Table 3

Means with standard deviations (in brackets) for P300 mean amplitudes (in pV) in the first and last block.

First block Fz Pz

Group Pos. feedback Neg. feedback Pos. feedback Neg. feedback
34 NDL 9.54 (4.55) 13.00 (5.79) 11.67 (4.27) 13.82 (4.84)
15 “new NDL” 13.69 (5.61) 18.41 (5.91) 14.87 (3.78) 16.96 (4.52)
Last block Fz Pz

Group Pos. feedback Neg. feedback Pos. feedback Neg. feedback
34 NDL 5.34 (5.39) 9.41 (8.94) 7.79 (4.79) 11.71 (7.05)
15 “new NDL” 8.64 (5.60) 14.44 (6.83) 10.37 (4.42) 14.27 (6.06)

pattern again shows that the frontal P300 is larger than the parietal
P300 only for negative feedback in the 15 “new NDL” (see Table 3).

3.4. Correlation analyses of strategy measures and ERP data

The post-experimental questionnaire assessed declarative
knowledge about feedback probabilities in the WPT after comple-
tion of the task. We therefore correlated questionnaire data with
strategy-data derived from choice performance and ERPs from the
last block of trials only. For this purpose, the difference between
the fit score for the non-declarative strategy and the fit score for
the declarative strategy was computed for each subject (see
Section 2.2.2 for details on strategy analysis). Negative values in
this difference measure indicate a non-declarative strategy,
whereas positive values indicate a declarative strategy, with

larger absolute values indicating a stronger preference for the
respective strategy.

Over all 56 subjects a weak but significant positive correlation was
found between the difference score for block 4 and the sum score in
the questionnaire (r=.321, p=.016), suggesting that subjects apply-
ing a more declarative strategy indeed had more explicit knowledge
about the WPT. Correlation analyses between the number of correctly
answered questions in the questionnaire and the frontal or parietal
positive or negative P300 amplitude of the last block did not reveal
any significant correlations (all p >.190).

Correlation analyses between strategy difference scores for the
first block and frontal and parietal P300 amplitude revealed a
near significant correlation with the frontal P300 amplitude after
positive feedback in the first block (p=.055) and a near significant
correlation for the parietal P300 amplitude after positive feedback
in the first block (p=.065), but not for negative feedback (both
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p > .118). These correlations indicate a relationship between the
predominance of declarative learning and the P300 amplitude for
the first block. No significant correlations were found between the
difference scores for the last block and the P300 amplitudes in the
last block (all p >.370).

4. Discussion

The present study analyzed the neural correlates of feedback
processing in declarative and non-declarative learners in PCL.
Subjects completed a modified version of the WPT (e.g., Gluck
et al., 2002; Knowlton et al., 1994), while EEG was recorded.
Based on their individual choice patterns, participants were
classified as declarative and non-declarative learners, respec-
tively. Changes in the engaged learning strategy over the course
of the experiment were also taken into account. Behavioural and
EEG Data were analyzed for the beginning (first block of the WPT)
and the end (last block of the WPT) of the experiment and related
to each other.

Participants who predominantly applied a non-declarative
learning strategy were generally more successful than those
subjects who engaged a declarative strategy. They responded
correctly and received positive feedback more often. Contrary to
our assumption, FRN amplitude was not affected by learning
strategy. DL did, however, show higher frontal P300 amplitudes
than NDL. In addition, P300 topography was different in DL and
NDL. While the P300 was generally higher for negative feedback
in both NDL and DL, the difference was more pronounced at
frontal than parietal electrodes in DL but not NDL. Interestingly,
some group differences in feedback coding as reflected by the
P300 also appeared to persist or were even more pronounced in
later stages of PCL, when the DL switched to a non-declarative
learning strategy. When both the first and the last block of trials
were considered, subjects who started with a declarative strategy
showed a generally enhanced P300 amplitude, irrespective of
electrode site. Furthermore, the pronounced P300 for negative
feedback over the frontal cortex persisted throughout the task
in these subjects. Across all participants, the relative contribution
of the declarative learning strategy correlated positively with
explicit knowledge about the WPT and tended to correlate with
P300 amplitude.

Two ERP components, the FRN and the P300, have been linked
to the processing of performance feedback in probabilistic learn-
ing tasks (e.g., Hajcak et al., 2007; Miltner et al, 1997). One
potential reason for the lack of strategy influences on the FRN in
the present study may relate to the definition of DL and NDL. In
accordance with the procedure applied in previous studies (e.g.,
Gluck et al., 2002), learning strategy was determined based on the
degree of deviation from a response pattern which would be
expected for the “pure” application of a particular strategy, that is
subjects differed with respect to the relative preference for one
strategy over the other, but may also have used aspects of both
strategies to solve the task. Similar classification procedures were
also applied in a range of previous studies using the WPT (e.g.,
Hopkins, Myers, Shohamy, Grossman, & Gluck, 2004; Shohamy
et al, 2004b). Schwabe and Wolf (2012), for example, also
distinguished between two types of strategies, “simple” (corre-
sponding to declarative in the present study) and “complex (non-
declarative)” (cf. also Thomas & LaBar, 2008). Other investigators
added further strategies, such as the multi-match strategy, which
assumes that participants’ choice frequency of a particular out-
come for a particular combination of cue cards matches the
outcome probability, rather than assuming optimal responding
(in terms of always choosing the more probable outcome) as in
the “classical” multi-cue strategy (Lagnado, Newell, Kahan, &

Shanks, 2006). Intermediate strategies represent a mixture of
strategies focusing on one cue card and those involving all cue
cards (Meeter, Myers, Shohamy, Hopkins, & Gluck, 2006). With
respect to the present FRN findings, it might be that the addition
of a third, mixed strategy and the comparison of (then) more
extreme groups of clear DL and NDL would have yielded FRN
differences.

Different aspects have been shown to be responsible for
modulations of the FRN amplitude in reward processing. For
example, many studies have shown decreases in FRN amplitude
with learning (e.g., Eppinger, Kray, Mock, & Mecklinger, 2008;
Luque, Lopez, Marco-Pallares, Camara, & Rodriguez-Fornells,
2012), possibly reflecting decreases in motivational significance
(Sailer, Fischmeister, & Bauer, 2010). The NDL of the present study
showed very good performance accuracy from the beginning of
the task and thus it cannot be excluded that the feedback stimuli
were not very salient any more, yielding reduced FRN amplitudes.
A recent study reported strategy influences on the FRN (Warren &
Holroyd, 2012). However, the experimental manipulation differed
from that in the present study as not differences in the type of
learning, but in task involvement were examined. FRN amplitude
modulations were highest in tasks involving active decision
learning compared with passively watching feedback (see also
Yeung, Holroyd, & Cohen, 2005).

Instead, the results of the present study may suggest that there
is no strong link between implicit feedback processing and the
learning strategy. Upon feedback presentation, the DA system
may be automatically recruited, and the dopaminergic signals
carrying reward information are propagated to the BG and the
ACC (Gaspar, Berger, Febvret, Vigny, & Henry, 1989; Williams &
Goldman-Rakic, 1993; for reviews on anatomical connections, see
Berger, Gaspar, & Verney, 1991; Smith & Bolam, 1990). A similar
suggestion has been made in a recent review on the FRN by Walsh
and Anderson (2012). They distinguish between a goal-directed
and habitual system controlling actions and suggest that DA
neurons code prediction errors irrespective of the system con-
trolling actions for a task at hand. The FRN as an indirect indicator
of DA neuron activity only coincides with performance, however,
when the habitual system is more strongly involved.

Whether or not a subject uses declarative processes in PCL
may be determined by additional recruitment of other structures.
For example, direct and indirect DA projections are supposed to
be sent from the midbrain to the hippocampus and to the
prefrontal cortex (for reviews, see Lisman & Grace, 2005;
Thierry, Gioanni, Degenetais, & Glowinski, 2000). Accordingly,
the P300, which has been described as an indicator of conscious
cognitive processes (Ridderinkhof, Ramautar, & Wijnen, 2009;
Sommer & Matt, 1990; Sommer, Matt, & Leuthold, 1990) and
reflects a later and therefore probably more declarative stage of
feedback processing, was larger in DL than in NDL of the present
study, most prominent over the frontal cortex. This result pattern
fits to findings of frontal involvement during declarative as well
as classification learning (Boettiger & D’Esposito, 2005; Brewer,
Zhao, Desmond, Glover, & Gabrieli, 1998; Halsband et al., 1998;
Lupyan, Mirman, Hamilton, & Thompson-Schill, 2012; Wagner
et al., 1998) and is consistent with findings on a role of prefrontal
cortex in P300 generation (Parvaz, Konova, Tomasi, Volkow, &
Goldstein, 2012). Prefrontal brain structures and the hippocam-
pus are anatomically connected and interact in long-term
memory formation, in the encoding and retrieval of memory
contents (Cohen, 2011; for reviews, see Simons & Spiers, 2003;
Thierry et al., 2000). It has to be noted, however, that, the P300
cannot generally be assigned to a single neural structure. Both
amplitude and topography vary considerably depending on the
task at hand (for a review, see Linden, 2005): The P300 may also
be composed of different subcomponents (P3a and P3b) with
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different topographies (for reviews, see Hruby & Marsalek, 2003;
Linden, 2005; Polich, 2007). Although it is possible that the
feedback-locked P300 shares more features with one of the two
subcomponents, no such distinction has been made in the context
of reward processing (e.g., Bellebaum & Daum, 2008; Sailer et al.,
2010; Wu & Zhou, 2009).

The described P300 differences between DL and NDL were
seen during the first phase of the experiment. In accordance with
previous studies on PCL (e.g., Shohamy et al, 2004b), most
subjects who started with a declarative strategy in the present
study switched to a non-declarative strategy during the course of
the experiment. However, some differences in feedback proces-
sing between subjects persisted: The P300 was elevated in those
participants who applied a declarative strategy at the beginning
and then switched compared to subjects who applied a non-
declarative strategy from the beginning on, albeit now over
frontal and parietal cortex. It is reasonable to assume that
declarative knowledge about stimulus-outcome associations was
still available in subjects who switched strategy and that non-
declarative aspects of learning were applied in addition. This
interpretation is supported by studies showing that the BG and
MTL memory systems can work in parallel during probabilistic
learning (Dickerson, Li, & Delgado, 2011; Mattfeld & Stark, 2011).

Taken together, this study provides first evidence for different
neural mechanisms of feedback processing in declarative and
non-declarative PCL. Strategy effects were seen in ERP correlates
of feedback processing, which provide a measure of brain activa-
tion with high temporal resolution. Differences between declara-
tive and non-declarative learning did not emerge for an early
BG-based ERP component, but at later, more declarative proces-
sing stages. The topography of the ERP differences may suggest a
stronger prefrontal mediation of negative feedback processing in
declarative learning which also persists, when subjects further
optimize responding by switching to a non-declarative strategy
during late phases of the task. A potential differential role of the
prefrontal cortex in declarative and non-declarative feedback
processing needs to be studied in the future applying techniques
with a higher spatial resolution for the assessment of brain
activation.
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