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Stress and the control of remembering: balancing 
hippocampal and striatal forms of memory retrieval
Lars Schwabe*

Memory can be controlled by multiple brain systems that may 
compete for control of behavior. It is by now well established 
that acute stress can bias this competition and favor dorsal 
striatum-dependent ‘habit’ learning over hippocampus- 
dependent ‘cognitive’ learning. Recent evidence in humans 
suggests that stress modulates the preferential engagement of 
multiple memory systems not only during memory formation 
but also at retrieval, after both hippocampal and dorsal striatal 
memory traces have been formed. The nature of this stress- 
induced shift of the brain systems guiding retrieval appears to 
depend on the intensity of initial training and may promote 
efficient responding during stressful encounters.
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Introduction
In the first half of the past century, the basal ganglia 
were mainly implicated in motor behavior [1]. Sub-
sequent research challenged the view of the basal 
ganglia as a pure motor system and revealed that the 
basal ganglia are involved in a variety of cognitive 
functions, ranging from learning and memory to atten-
tional processes or the building of action plans [1–3]. In 
particular, the dorsal striatum, composed of caudate 
nucleus and putamen, was shown to be relevant for a 
form of learning, often referred to as ‘habit’ learning, in 
which rather rigid stimulus-response (S-R) associations 
are incrementally built [1,4,5]. This putative dorsal 
striatal S-R ‘habit’ memory system has been dissociated 

from a flexible but cognitively more demanding (‘cog-
nitive’) memory system that processes the relationship 
between multiple cues to build a cognitive map and 
depends mainly on the hippocampus [4,6]. These dorsal 
striatal and hippocampal memory systems operate in 
parallel [7] but may lead to distinct responses and 
compete for control of behavior [8,9]. A key question 
thus concerns the factors that determine which of these 
memory systems gets the upper hand and can thus guide 
behavior.

Research over the past two decades demonstrated that 
arousal or stress may bias the preferential engagement of 
striatal and hippocampal memory systems [10–12]. 
Stressful events have been known for long to be a 
powerful modulator of learning and memory [13,14]. 
Although major stress mediators, such as glucocorticoids 
and noradrenaline, were initially thought to act primarily 
on medial temporal and prefrontal areas, more recent 
evidence suggests that these stress mediators impact also 
striatal processes [15–17]. Beyond its effects on the 
functioning of a single memory system, stress has been 
shown to modulate the balance of multiple memory 
systems. Most of the research in this area focused on the 
preferential recruitment of hippocampal ‘cognitive’ 
memory and dorsal striatal ‘habit’ memory during 
learning. I will briefly summarize these findings in the 
first part of this review. Recent research revealed that 
stress may modulate, in addition to its effects on the 
engagement of multiple memory systems during 
learning, the preferential recruitment of coexisting hip-
pocampal and dorsal striatal memory traces during re-
membering. I will focus on these recent discoveries in 
the second part of this review. Finally, I will suggest that 
modulatory effects of stress on the acquisition and ex-
pression of ‘cognitive’ vs. ‘habitual’ memories can be 
found across domains of memory, pointing to a general 
mechanism that may facilitate adaptation to stressful 
events.

Stress-related shift from hippocampal to 
dorsal striatal memory formation
Using dual-solution tasks that can be acquired by hip-
pocampus-dependent spatial (cognitive) and dorsal 
striatum-dependent S-R (habit) memory (Box 1), initial 
studies in rodents showed that stress shortly before 
training may favor habit over cognitive learning [18,19]. 
These findings were important as they demonstrated 
that acute stress affects not only how much is learned or 
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memorized in a situation but also what is learned and 
how a task is approached. Subsequent research provided 
insights into the underlying mechanisms. Specifically, 
injection of an anxiogenic drug directly into the baso-
lateral amygdala was sufficient to induce the bias to-
ward habit memory [20], suggesting a key role of the 
amygdala in the shift from cognitive to habit learning. 
Furthermore, pharmacological manipulations showed 
that noradrenergic arousal and glucocorticoids acting via 
the mineralocorticoid receptor are involved in the bias 
from hippocampal to dorsal striatal learning [19,20]. 

These rodent data were subsequently translated to hu-
mans. As in rodents, stress before training in dual-solution 
tasks favored dorsal striatal S-R memory also in humans, 
at the expense of hippocampal spatial memory [21,22]. 
Neuroimaging studies linked this stress-induced shift to 
reduced hippocampal and increased dorsal striatal activity  
[23,24] but also to an opposite pattern of amygdala con-
nectivity with the hippocampus and dorsal striatum, re-
spectively [24–26]. Whereas amygdala–hippocampus 

connectivity was reduced by stress, amygdala–dorsal 
striatum connectivity increased, in line with rodent data 
suggesting that the amygdala orchestrates the stress-re-
lated shift in the preferential engagement of hippo-
campus and dorsal striatum during learning. A recent 
study that combined functional magnetic resonance 
imaging (fMRI) with a virtual navigation task further re-
vealed that a stress-related reduction in behavioral flex-
ibility was associated with reduced neural replay of future 
locations in the spatial environment [27••]. In striking 
parallel to the rodent studies, the shift to habit learning 
after stress was linked to noradrenergic arousal [24] and 
glucocorticoids acting through the mineralocorticoid re-
ceptor [26]. Blockade of the mineralocorticoid receptor 
abolished the shift toward dorsal striatal memory and 
genetic variants linked to mineralocorticoid receptor ex-
pression could explain interindividual differences in the 
sensitivity to the stress-induced shift from hippocampal to 
dorsal striatal learning [26,28]. In sum, findings across 
tasks and species showed that stress or major stress 
mediators promote a shift in the memory system 

Box 1 Dissociating hippocampal and dorsal striatal memory.  

In order to separate hippocampus-based and dorsal striatum-based memory system, rodent studies used mainly spatial navigation tasks, in which 
a goal location could be learned using the relationship between multiple cues (i.e. a spatial or ‘cognitive’ strategy) or by learning the association 
with a single proximal cue or simple motor response (i.e. a response or ‘habit’ strategy). In a subsequent test trial, the proximal cue was relocated 
or the starting position changed to probe whether animals had learned a S-R association or a spatial location. For instance, in a plus maze task (A), 
animals were trained to find a food reward placed in the west arm. During training, they always started from the north arm. To dissociate 
hippocampal cognitive from dorsal striatal habit learning, a probe trial was administered in which animals started from the south arm. In this test, 
turning right was indicative of a habitual response strategy and turning left of a more cognitive spatial strategy [29]. Similar setups were used in 
cued versions of a water maze [18] or in a circular hole board task [19]. Inspired by these rodent experiments, human studies used similar dual- 
solution navigation tasks, mainly in virtual environments, to separate hippocampal spatial from dorsal striatal response learning [5,21,22]. In 
addition to these navigation tasks, human studies used probabilistic classification learning tasks in which participants learn based on trial-by-trial 
feedback how to categorize different patterns of stimuli (B). Neuropsychological studies in patients with amnesia or Parkinson’s disease as well as 
fMRI studies in healthy participants showed that these classification tasks can be supported by the hippocampus and by the dorsal striatum [9,51]. 
At the behavioral level, the contributions of these systems manifest in cognitive and habitual learning strategies that can be identified by math-
ematical modeling [52].  
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preferentially engaged during learning, from hippocampal 
cognitive to dorsal striatal habit memory. 

Stress-induced modulation of hippocampal 
and dorsal striatal control of retrieval 
Under nonstressful conditions, hippocampus-dependent 
cognitive and dorsal striatum-dependent habit memory 
systems can contribute equally to task acquisition, de-
pending on the extent of practice. Hippocampal memory 
develops typically early during training, whereas dorsal 
striatal memory emerges typically only after more ex-
tended training [5,9,29]. The emergence of dorsal striatal 
activation is thought to coincide with the shift from 
cognitive to more habitual learning strategies [30], and 
this shift appears to be accelerated by stress [31]. At the 
end of training, both hippocampal and dorsal striatal 
memory traces should have evolved. If multiple memory 
traces coexist, the question arises which of these is used 
at subsequent retrieval. Can stress bias, in addition to its 
impact on the engagement of hippocampal and dorsal 
striatal learning strategies, also the preferential recruit-
ment of already-established hippocampal and dorsal 
striatal memory traces at retrieval? 

Although habit memory formation and retrieval appear to 
involve distinct mechanisms [32•], an initial rodent study 
suggested that stress might also induce a preference for 
habitual over cognitive memory retrieval. In this study, 
intra-amygdala infusion of an anxiogenic drug before 
memory retrieval led to a bias toward habit memory [33]. 
However, although stress effects on retrieval processes 
within hippocampal or dorsal striatal memory systems are 
well established [16,34], investigation into the influence 
of stress on the balance of hippocampal and dorsal striatal 
memory at retrieval has only recently begun, in particular 
in humans. A recent study revealed that stress-induced 
elevations of cortisol shortly before retrieval favor habit 
over cognitive memory [35••]. Using fMRI, this study 
further showed that stress and cortisol increased dorsal 
striatal activity during retrieval but reduced amygdala–-
hippocampus connectivity, thus suggesting that stress 
promotes habit memory retrieval. In sharp contrast to 
these findings, another study indicated that administra-
tion of glucocorticoids or the α2-adrenoceptor antagonist 
yohimbine, leading to increased noradrenergic stimula-
tion, reduced the shift toward habit memory retrieval 
relative to placebo [36]. The glucocorticoid-related re-
duction in the engagement of the efficient habit memory 
system was further accompanied by impaired retrieval 
performance. Similarly, another recent study showed that 
stress before retrieval resulted in a preference for cogni-
tive memory compared with nonstressed controls and that 
this stress effect was abolished by the β-adrenergic re-
ceptor antagonist propranolol [37]. How can these see-
mingly discrepant results be reconciled? 

All of these studies showed consistently a practice-de-
pendent shift from cognitive to habit learning strategies 
during training, in line with earlier findings [5,9,30]. 
However, one critical difference between these studies was 
the extent of training. While training was moderate in the 
study that showed a stress-induced shift toward habit 
memory retrieval [35••], initial training was rather ex-
tensive in the two studies that obtained a stress-related 
bias toward cognitive memory retrieval [36,37]. Could the 
intensity of initial training and by implication the initial 
strength of the hippocampal and dorsal striatal memory 
traces impact the nature of the modulatory effect of stress 
on the memory system recruited at retrieval? A recent 
study tested this hypothesis [38•]. Participants completed 
either 100 trials or 200 trials of a classification learning task 
that can be solved by the hippocampus or by the dorsal 
striatum (Box 1). Twenty-four hours later, participants 
underwent a stress or control manipulation before they 
performed a retention test. The results of this study 
showed that stress led to a bias toward habit memory re-
trieval in participants that underwent moderate training 
but had no effect in those who underwent extensive 
training. Together, there is accumulating evidence that 
stress may not only modulate the preferential engagement 
of hippocampal and dorsal striatal memory systems during 
learning but also the relative recruitment of established 
hippocampal and dorsal striatal memory traces at retrieval, 
with the nature of these effects depending on the strength 
of the initial memory traces (Figure 1). 

Stress-induced modulation of multiple 
memory systems across domains 
Differential contributions of multiple memory systems are 
not limited to spatial navigation or classification learning 
tasks but can be observed in various domains of learning 
and memory. For instance, hippocampal and dorsal striatal 
contributions can also be distinguished in motor learning  
[39]. Moreover, ‘cognitive’ memory systems that depend 
on the hippocampus or prefrontal cortex (PFC) and ‘ha-
bitual’ memory systems depending on the dorsolateral 
striatum or the amygdala have been described in threat 
learning and instrumental or reinforcement learning  
[40–42]. Interestingly, in all of these domains, stress has 
been shown to shift the balance of these memory systems 
toward the habitual systems, pointing to a general cognitive 
mechanism under stress. In motor learning, stress induced 
a shift from hippocampal–cortical networks to sensorimotor 
regions [43•]. Likewise, in fear learning, stress favors 
amygdala-dependent cue- and delay-conditioning, at the 
cost of hippocampal context- and trace-conditioning  
[44–46]. Moreover, in instrumental learning, stress may 
shift behavioral control from PFC-dependent goal-directed 
or model-based systems toward dorsolateral striatum-de-
pendent habitual or model-free systems [47•-49]. Virtually, 
all of these studies induced stress before learning. 
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However, one study on instrumental learning exposed in-
dividuals to a stressor before a retention test and revealed 
that stressed individuals showed a bias toward habitual 
responding [50], in line with the findings described above 
that suggest that stress may bias the recruitment of mul-
tiple memory systems also at retrieval. 

Concluding remarks 
Findings across species, tasks, and domains of learning and 
memory indicate that stress before learning may bias the 
recruitment of multiple memory systems in favor of rather 
simple, reflexive systems, such as the dorsal striatum, at the 
expense of more flexible but cognitively more demanding 
systems, such as the hippocampus. This stress-induced 
shift from ‘cognitive’ to ‘habit’ learning appears to be 
adaptive for coping with an ongoing stressor as this bias 
allows intact performance under stress, while its (pharma-
cological) blockade is associated with performance deficits  
[19,26]. Recent evidence suggests that the modulatory 
influence of stress on the preferential engagement of 
multiple memory systems is not limited to memory for-
mation but can also be found at retrieval, when multiple 
memory traces are available. Whether stress before re-
trieval promotes ‘habit’ or ‘cognitive’ memory appears to 
depend on the extent of training in the specific task. The 
stress-induced bias toward ‘habit’ memory retrieval after 
moderate training might be adaptive as the use of this less- 
demanding system may enable individuals to leverage 
well-established routines that allow efficient responding 
and free cognitive resources for coping with the stressor. 
The functional relevance of a potential stress-related bias 
toward more cognitive memory retrieval after extensive 
training remains less clear (and it is to be noted that this 
was not consistently found, see [38•]). Possibly, hippo-
campal memory traces are stronger after extended training, 

making them more robust and effective under stress. This, 
however, remains speculative and there is evidence sug-
gesting that the bias toward ‘cognitive’ memory retrieval 
after extended training is associated with impaired per-
formance [37]. Moreover, as in all studies testing stress 
effects on either encoding or retrieval, stress selectively 
before retention testing results in a different state during 
encoding and retrieval, which might also impact memory 
performance as well as the preferential memory system 
engagement (for a discussion of the issue of state de-
pendency, see [33]). Elucidating the functional relevance 
of the stress-induced modulation of multiple memory 
systems at retrieval as well as the exact mechanisms in-
volved herein is a challenge for future research. A better 
understanding of how stress may bias the preferential en-
gagement of multiple memory systems at retrieval may 
have important clinical implications, for instance, related to 
the prevention of relapse to dysfunctional routines in 
stress-related mental disorders. 
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memory. Stress is assumed to accelerate this shift and favor ‘habit’ over ‘cognitive’ memory. (b) When both hippocampal and dorsal striatal memory 
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depend on the extent of initial training, with stress before retrieval promoting habit memory after moderate training but leaving the mode of retrieval 
unaffected or even reducing habit memory after extensive training.   
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