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ABSTRACT
Stressful events are ubiquitous in everyday life. Exposure to these stressors initiates the temporally orchestrated
release of a multitude of hormones, peptides, and neurotransmitters that target brain areas that have been critically
implicated in learning and memory. This review summarizes recent insights on the profound impact of stress on 4
fundamental processes of memory: memory formation, memory contextualization, memory retrieval, and memory
flexibility. Stress mediators instigate dynamic alterations in these processes, thereby facilitating efficient responding
under stress and the creation of a decontextualized memory representation that can effectively aid coping with novel
future threats. While they are generally adaptive, the same stress-related changes may contribute to the rigid be-
haviors, uncontrollable intrusions, and generalized fear responding seen in anxiety disorders and posttraumatic stress
disorder. Drawing on recent discoveries in cognitive neuroscience and psychiatry, this review discusses how stress-
induced alterations in memory processes can simultaneously foster adaptation to stressors and fuel psychopa-
thology. The transition from adaptive to maladaptive changes in the impact of stress on memory hinges on the
nuanced interplay of stressor characteristics and individual predispositions. Thus, taking individual differences in the
cognitive response to stressors into account is essential for any successful treatment of stress-related mental
disorders.

https://doi.org/10.1016/j.biopsych.2024.06.005
Imagine being attacked by a stranger in a park. You can feel
your heart beating and your breathing accelerating. These
immediate bodily responses are driven by rapid actions of
adrenaline and noradrenaline. In addition to these, numerous
other hormones, peptides, and neurotransmitters are released
during an acute stressor (1), including glucocorticoids that
provide the body with energy in times of stress (2). Together,
these stress mediators enable a fight-or-flight response and
are thus essential for adapting to stressful events. Importantly,
beyond their immediate bodily effects, these stress mediators
may facilitate adaptation to stressful events in a less overt
manner—by shaping cognition. The effects of stress on
learning and memory processes are particularly prominent
(3–5). By modulating these cognitive functions, stress media-
tors enhance the ability to cope with ongoing stressors, such
as an attack in the park, while simultaneously preparing the
organism for similar encounters in the future (6,7).

While generally highly adaptive, the effects of stress on
memory, much like exaggerated bodily stress responses, can
become maladaptive and contribute to the development of
mental disorders. Stress is a well-established factor in various
mental disorders, including posttraumatic stress disorder
(PTSD) and anxiety disorders, in which maladaptive memory
processes are prominent. Stress-induced alterations in mem-
ory processes are considered to be significant contributors to
the onset and progression of these disorders (8,9). In partic-
ular, aberrant memory of the trauma is the hallmark feature of
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PTSD and has been linked to other diagnostic criteria such as
avoidance and hyperarousal.

In this review, I discuss how stress-induced changes in
memory facilitate adaptation to an ongoing stressor but can
also fuel stress-related psychopathologies. In the first section,
a concise summary of stress effects on memory is provided.
The focus is particularly on memory processes that may play a
crucial role in adapting to stressful events—and in maladaptive
changes that contribute to psychopathology. The subsequent
sections of this review explore how stress-induced alterations
in memory can contribute to adaptation and, conversely, may
be implicated in the development of mental disorders. The final
section addresses factors that influence the transition from
adaptive to maladaptive effects of stress on memory.

HOW STRESS SHAPES LEARNING AND MEMORY

The precise synchrony of increased noradrenergic activity and
rapid, nongenomic glucocorticoid actions during an acute
stressor triggers a shift from default mode and executive
control networks, including the prefrontal cortex (PFC), to a
salience network that encompasses the amygdala (10). The
salience network prioritizes the processing of emotionally
salient information, often at the expense of contextual details.
Genomic glucocorticoid actions, which manifest hours after
stressor onset, may subsequently reverse these effects and
support the restoration of homeostasis (10) (Figure 1).
Consequently, the impact of stress on memory is critically time
f Biological Psychiatry. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 1. Effects of stress mediators on the
functioning of brain structures critical for memory.
Within (milli)seconds after stressor exposure, cate-
cholamines are released from the adrenal medulla
and specific nuclei in the brain. The catecholamine
levels induced by intense stressors are thought to
impair prefrontal cortex (PFC) functioning and
enhance amygdala (AMY) functioning. For the hip-
pocampus (HC), the effects are mixed. While some
hippocampal functions (e.g., memory formation for
the stressor) are enhanced, others are impaired (e.g.,
context processing or memory integration). Gluco-
corticoids are released from the adrenal cortex with
a delay of several minutes. These glucocorticoids
can exert rapid, nongenomic effects that are medi-
ated via near-membrane receptors and slow,
genomic effects via intracellular receptors. Rapid
glucocorticoid effects appear to amplify catechol-
amine effects, especially if catecholamine and

glucocorticoid actions are well synchronized in time and space. In contrast, slow, genomic glucocorticoids are assumed to exert opposite effects, leading to
increased PFC functioning but reduced AMY and HC processing, presumably to normalize mnemonic functioning after a stressor (or shield the memory
formation for the stressor from competing memory processes).
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dependent, closely tied to the temporal profile of action of
stress mediators (3,5,6), and contingent on the specific
memory process. Here, the focus will be on the impact of acute
stress on 4 key domains of memory: memory formation, con-
textualization, retrieval, and flexibility (for an overview of rele-
vant studies, also see Table S1).

Enhanced Memory Formation

Stressful events, such as an attack by a stranger, are much
better remembered than mundane events (11–13). This mem-
ory enhancement is due to enhanced encoding and attentional
processes, which are driven by noradrenergic arousal-induced
alertness and activation of the amygdala (14). Moreover, stress
enhances memory consolidation (3,5,15). Specifically, norad-
renergic arousal and glucocorticoids interact in the basolateral
amygdala, which then modulates memory storage in other
brain areas, such as the hippocampus (16,17). Consistent with
this view, increased amygdala-hippocampal connectivity after
an aversive event predicts subsequent memory of the event
(18,19). Furthermore, recent research showed that the subse-
quent memory of a stressful event was linked to the repre-
sentation of specific event features in the basolateral amygdala
(20). Another key player in memory formation for stressful
events is the locus coeruleus, the main source of noradrenaline
in the brain. Locus coeruleus activity strengthens memory
formation of prioritized information under arousal (21) and
tracks the temporal organization of memories (22), the seg-
mentation of which facilitates subsequent remembering (23).
Interestingly, noradrenergic arousal may also alter the long-
term dynamics of memory. More specifically, over time,
memories can become independent from the hippocampus
and more reliant on neocortical areas (24), and this change is
accompanied by a time-dependent decrease in memory
specificity (25). Postencoding noradrenergic arousal can
reverse this process, rendering memories even more hippo-
campus dependent and specific over time (26,27). Importantly,
while stress enhances memory formation, this memory
enhancement is specific to events encoded around the time of
the stressor. Sometime after the stressor, when noradrenergic
340 Biological Psychiatry February 15, 2025; 97:339–348 www.sobp.o
arousal and glucocorticoids are desynchronized, stress im-
pairs memory formation and hippocampal neuroplasticity
(28–30).

Memory Decontextualization

Even though stressful events are often vividly remembered,
this memory enhancement does not extend uniformly across
all elements of a stressful episode. While memory for key
features of a stressor is typically enhanced, memory for
contextual details of a stressor can be impaired. For example,
during an attack by a stranger, one may memorize specific
features of the assailant, such as their voice, but not neces-
sarily the details of the environment of the incident. Conse-
quentially, models of memory formation under stress assume
that arousal enhances item memory but impairs context
memory (31,32). Consistent with this view, acute stress has
been shown to facilitate cue-dependent fear learning at the
expense of contextual fear learning (33,34). Moreover, while
stress boosts the memory of the individual elements of an
episode, it can hinder the memory of the links between these
elements, which results in fragmented memories (35). The
reduced contextual embedding of memories encoded under
stress has been associated with nongenomic glucocorticoid
actions (34,36). Rodent data revealed that these effects may
be attributed to increased amygdala activity, promoting
enhanced cue memory, and reduced hippocampal activity,
leading to impaired memory contextualization (34). A key role
of the hippocampus in glucocorticoid-induced memory
decontextualization is supported by recent evidence linking
this decontextualization to dentate gyrus granule cells (37).
Importantly, while rapid glucocorticoid actions result in a
decontextualization of events encoded under stress,
delayed genomic glucocorticoid actions may reverse these
effects (36,38).

Impaired Memory Retrieval

Stress can impair memory retrieval (13,39). Similar to the
stress-induced enhancement of memory consolidation, this
rg/journal
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retrieval impairment after stress requires concurrent norad-
renergic and glucocorticoid activity in the basolateral
amygdala, which then modulates retrieval processes in areas
such as the hippocampus (40,41). In the hippocampus, the
stress-induced retrieval deficit has been linked to reduced
long-term depression (42). Recent neuroimaging findings
revealed that stress impaired the capacity of the hippocampus
to reinstate memory representations in neocortical represen-
tation sites (43). Moreover, acute stress may alter memory
retrieval by shifting recall from hippocampal to dorsal striatal
control (44). Interestingly, initial evidence suggests that stress
not only impairs recall performance but also affects the
capacity to voluntarily control (i.e., suppress or activate) the
retrieval of specific information, linked to disruptive effects of
glucocorticoids on the crosstalk between the PFC and
hippocampus (45).

Reduced Memory Flexibility

Stress induces a shift from flexible cognitive memory systems,
such as the hippocampus or PFC, to more rigid habitual
memory systems, such as the dorsal striatum. This shift from
cognitive to habit memory has been demonstrated across
various memory domains (33,46–51). An increased reliance on
single cues under stress at the expense of relational pro-
cessing is common to these domains. For example, the stress
experienced during an attack by a stranger may result in strong
memory of individual elements of the incident (e.g., sounds or
odors) but impaired memory of how the adverse event
unfolded. The stress-induced bias toward habit memory is
mediated by glucocorticoids acting rapidly via mineralocorti-
coid receptors (7,52,53), presumably in interaction with
noradrenaline (49,54,55), and orchestrated by the amygdala
(49,53,54). Closely tied to the prevalence of habit memory,
stress disrupts memory flexibility. This diminished mnemonic
flexibility under stress is evident in more rigid navigational
behavior (56), a reduced ability to integrate information from
separate episodes (57,58), or an impaired capacity to incor-
porate new information into existing knowledge structures (59).

THE BRIGHT SIDE OF IT: HOW STRESS RESPONSE
SYSTEMS TUNE MEMORY TOWARD ADAPTATION

The various effects of stress on memory exhibit remarkable
consistency across species (3,60). Their preservation
throughout evolution suggests that these stress effects serve
an adaptive purpose by aiding in coping with ongoing
stressors or similar future events.

Enhanced Memory Formation

Enhanced memory for key features of stressful events is, at
least partially, attributable to the arousal-driven recruitment of
the salience network (10) and subsequent heightened attention
to these stimuli (61). Thus, memory enhancement for stressful
events can be considered a byproduct of the increased
attentional processing of the most salient stimuli in a stressful
situation. Increased processing of these stimuli, such as the
assailant during an attack, is essential for survival during
threatening encounters. Memory itself supports adaptive
behavior by allowing past experiences to guide future actions
(62). Specifically, the enhanced memory for stressful events,
Biological Psyc
which is driven by the interaction of catecholamines and
glucocorticoids, serves the purpose of preparing for similar
stressors in the future. Notably, the fact that there is no global
memory enhancement for a stressor and that memory can
even be severely impaired for stressor-irrelevant material
encoded under stress (63) suggests a pruning of the memory
of a stressor (i.e., reducing the memory strength for stressor-
irrelevant information), which may facilitate efficient prepara-
tion for similar future events.

Memory Decontextualization

This pruning of memory formation under stress can also
contribute to reduced memory for contextual details of a
stressful event. The resulting decontextualized memories may
be essential to transfer these memories to situations that have
never been encountered before (64). To achieve this transfer,
abstract conceptual knowledge that goes beyond the specific
experience and allows multidimensional similarity judgments is
important (65). Decontextualized memories reduce complexity
because they enable individuals to focus only on the features
that are most relevant during a threatening encounter (66).
Similarity judgments based on decontextualized memories
further promote generalization to novel stimuli and hence the
mobilization of defensive behaviors to potentially threatening
events without the need for direct aversive experiences with
these events, thereby reducing potential harm to the
organism (64).

Impaired Memory Retrieval

The retrieval impairment often observed under stress may
reduce distraction by facilitating focused attention on the
ongoing stressor. While reduced retrieval performance shortly
after stressor exposure is commonly interpreted as a specific
retrieval impairment, it could also result from competition be-
tween retrieval processes and memory formation processes
for the stressful event, with the latter being given priority (67).
This raises an intriguing question: Why should stressful events
be preferentially stored in memory if they cannot be readily
accessed during future stressors? One argument posits that
strong memories aid survival by enabling the prevention of
stressor exposure while in a state of safety (64); therefore, their
value may not necessarily depend on their immediate acces-
sibility under stress. Alternatively, the accessibility of infor-
mation under stress may hinge on the relevance of the
information to the stressor. For example, recalling your last
birthday while under attack in a park would be distracting, but
remembering the pepper spray in your handbag would be
highly beneficial. There is initial evidence that stress-induced
arousal enhances the retrieval of stressor-related information
(68), consistent with previous reports of the facilitating effects
of noradrenaline on memory retrieval (69). However, these
beneficial effects on memory retrieval were reversed when
stress-induced glucocorticoids rose to peak levels (68), thus
corroborating the impairing effects of glucocorticoids on
retrieval (39). Consequently, the stress-induced retrieval
impairment appears to be specific to stressor-unrelated ma-
terial that could distract from the ongoing stressor, and it is
most pronounced when the organism stores the stressful
event in memory for future use.
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Reduced Memory Flexibility

When under stress, individuals operate on autopilot, relying
on well-established habits and routines (70). These habits,
initially formed due to their association with desirable out-
comes, carry the highest probability of yielding beneficial
outcomes and facilitating efficient responding. The engage-
ment of habits under stress serves to conserve cognitive re-
sources for coping with the stressor. Moreover, habits
primarily involve striatal areas (71), which play a lesser role in
memory formation for stressors (3,16), thereby minimizing the
competition between behavioral responding and memory
storage. The adaptive significance of habitual responding
under stress has been exemplified in studies that have shown
that the shift toward striatal habit memory rescued perfor-
mance under stress (52,53).

THE DARK SIDE OF IT: HOW STRESS-INDUCED
CHANGES IN MEMORY MAY CONTRIBUTE TO
PSYCHOPATHOLOGY

While specific alterations in memory under stress may facilitate
coping with stressful events, these same changes can become
maladaptive and features of stress-related psychopathologies.

Enhanced Memory Formation

Overly strong memory of highly stressful events is the hallmark
feature of PTSD (72). Beyond PTSD, enhanced memory for
arousing events is also prominent in mood and anxiety disor-
ders (73,74). The painful strength of emotional memory in these
disorders may be driven by aberrances of the well-known
mechanisms that underlie memory formation under stress.
Specifically, accumulating evidence suggests an involvement
of the salience network, which prioritizes the encoding of
emotionally salient information, in these disorders (75,76). The
findings of a recent longitudinal study that demonstrated that
stress-induced changes in the coupling of the salience
network predicted the development of PTSD after trauma
exposure are particularly intriguing (77). Similarly, salience
network activity can predict subsequent depressive symptoms
(78). Apart from changes in the recruitment of the salience
network, it has been proposed that aberrant emotional mem-
ory enhancement in these stress-related disorders may be
linked to an overconsolidation of memory for emotional (trau-
matic) events, which is driven by the excessive release of
stress mediators and amygdala hyperactivity (9). Interestingly,
while excessive catecholamine levels have been linked to
trauma memory, PTSD is not characterized by increased
glucocorticoid concentrations (79). Instead, blunted glucocor-
ticoid levels appear to be associated with PTSD risk, and it has
been suggested that glucocorticoid administration after
trauma reduces the risk of PTSD (80,81) [but see (82)]. It is
tempting to speculate that this seemingly paradoxical pattern
points to a role of delayed genomic glucocorticoid actions that
serve to rationalize or contextualize stressful events (36,38).

Memory Decontextualization

While memory of the traumatic event is typically extremely vivid
in PTSD, memory of the context of this event is often weak (83).
This decontextualization is both a predictor of PTSD (84) and a
factor that aggravates the disorder (85). Moreover, it has been
342 Biological Psychiatry February 15, 2025; 97:339–348 www.sobp.o
suggested that decontextualized memory contributes to the
debilitating nature of trauma memory; when disconnected from
its spatiotemporal context, the traumatic memory can be
reactivated by any trauma-related cue, even in contexts that are
clearly distinct from the trauma’s context, which leads to the
uncontrollable intrusions characteristic for PTSD (83). Beyond
PTSD, decontextualized memories of threatening events can
contribute to generalized fear responding in anxiety disorders,
resulting in exaggerated fear or avoidance behavior even in
response to nonthreatening stimuli in safe contexts (86,87). For
example, after an attack by an assailant wearing a red cap,
exposure to a reddish hat may result in strong fear responses,
even in safe environments, such as a clothing store. This
overgeneralization of fear memories has been linked to stress
and glucocorticoids that affect hippocampal representations
of fear (37,88,89) and to dysfunctional input of the hippocampus
to the amygdala (90,91).

Impaired Memory Retrieval

While overgeneralized fear responding may result from
reduced integration of contextual details into the memory
trace, it could also result from stress interfering with the ability
to recall specific context information (92,93), thereby hindering
the distinction between threatening and safe environments.
Furthermore, stress-induced retrieval deficits may compromise
the retrieval of information about effective coping strategies or
past experiences of successfully managing stressful events
(e.g., repelling an assailant), thus limiting the individual’s ability
to effectively deal with challenging situations. Similarly, stress
has been shown to reduce individuals’ ability to actively control
memory retrieval processes (45), and a breakdown of this
PFC-dependent retrieval control capacity has been linked to
PTSD (94,95).

Reduced Memory Flexibility

An overreliance on habit memory while under stress may
contribute to the disintegrated, fragmented memory of PTSD
(83,96). Such memories are difficult to integrate into autobio-
graphical memory, which is typical under the control of hip-
pocampal cognitive memory (97). Furthermore, the
predominance of habit memory under extreme stress has been
associated with excessive stimulus-response learning mech-
anisms, laying the basis for the strong emotional response to
single trauma-related cues commonly observed in PTSD.
Beyond PTSD, aberrant habitual stimulus-response memory is
also prominent in anxiety disorders, obsessive-compulsive
disorder, and addiction (98–100). Habit memory is character-
ized by automatic, routinized behaviors (101). In the context of
stress-related disorders, such inflexible habits may hinder
adaptive coping, preventing individuals from effectively
adjusting their responses to changing circumstances.
Furthermore, stress may drive individuals to adopt habits that
provide a temporary escape from distress but are ultimately
harmful (102).

ON THE TRANSITION FROM ADAPTATION TO
DISORDER

How can the generally adaptive mnemonic responses to stress
become maladaptive? The answer to this fundamental
rg/journal
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Enhanced memory formation
Memory decontextualization
Impaired memory retrieval
Reduced memory flexibility

STRESS

Prioritization of salient stimuli
Efficient responding
Memory transfer to novel
threats

Successful adaptation Maladaptation
Uncontrollable intrusions
Generalized fear responding
Rigid behaviors
Reduced accessibility of coping
strategies

Individual background

Genes Development Social support

Age & Gender Socioeconomic position

Stressor characteristics

Intensity Duration & Repetition

Controllability Type of stressor

Figure 2. Model of (mal)adaptive changes in memory under stress. Exposure to a stressor results in enhanced memory formation for central features of the
stressor, memory decontextualization, impaired memory retrieval, and diminished memory flexibility. These stress-induced changes in memory can aid
adaptation to ongoing and future stressors but can also fuel psychopathology. The background of the individual and stressor characteristics (and their
interaction) have a major impact on the stress response and its adaptive or maladaptive influence on memory. (Icons designed by Freepik, Leremy, Design
Circle, and Parcival 1997 from flaticon.com.)
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question in the field of stress and memory likely involves
characteristics of the stressor and the background of the in-
dividual, as well as the interaction between the two (Figure 2),
which is reflected for example in stressor appraisal or coping
style, which are known to modulate memory (103,104). Taking
these factors into account is essential for effective intervention
strategies and personalized psychiatry approaches [for more
extensive discussion of some of these factors, see (105–109)].

Stressor Characteristics

Intensity. The impact of stress on memory is intricately
linked to the (subjective) intensity of the stressor (11), and
instances of PTSD-like memory aberrations are more preva-
lent following exposure to extreme stressors (34). Notably, the
intensity-dependent impact of stress on memory is mirrored
in the dose-dependent effects of major stress mediators,
with higher dosages yielding more pronounced changes in
memory (17,110,111).

Duration and Accumulation. It has been documented
that repeated and chronic stress yield notable memory dys-
functions, including excessively strong cue-related fear mem-
ories and impairment in spatial memory (105,112,113).
Biological Psyc
Observed memory impairments following chronic stress are
attributed to a dysregulation of major stress response systems
and concomitant alterations in crucial brain regions such as
the amygdala, PFC, and hippocampus (112,114,115).

Type of Stressor. Physiological stress responses are criti-
cally dependent on the type of stressor (116,117). Initial evi-
dence suggests that stressor type may also modulate stress
effects on memory, with psychosocial stressors leading to
more pronounced memory alterations than mere physical
stressors (13). Moreover, traumas that involve negative social
interactions are more likely to result in later PTSD than, for
example, natural disasters (118).

Controllability and Predictability. Compared with
controllable stress, uncontrollable stress exerts particularly
detrimental effects on memory and neuroplasticity (119,120).
Recent findings have also shown that the subjective percep-
tion of uncontrollability, rather than the objective (un)control-
lability of adverse events, plays a pivotal role in driving the
adverse impact of stress on memory processes (121). In close
association with stressor uncontrollability, the unpredictability
of stressors appears to be a key factor that influences both
hiatry February 15, 2025; 97:339–348 www.sobp.org/journal 343
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physiological stress responses and subsequent effects on
memory (122,123).

Individual Characteristics

Gender and Age. The prevalence of stress-related mental
disorders is significantly higher in women than in men (124),
which may be due to gender-related inequalities, a heightened
exposure of women to domestic violence, or the potential in-
fluence of sex hormones (124–126). Arousal mechanisms and
the neurocircuitry underlying emotional memory also exhibit
gender differences (126), which may have implications for
gender-specific influences of stress on learning and memory
(93,113). In addition to gender, age has emerged as a potential
risk factor for the detrimental effects of stress on memory. The
brain is particularly susceptible to the impact of stressors
during critical developmental periods, such as adolescence
and old age, which coincide with the onset of psychopathol-
ogies (105). Importantly, interactions between gender and age
may further modulate these effects. For example, women
display heightened sensitivity to stress and its impact on
cognition during periods of hormonal change, such as puberty
or menopause (127).

Genetic Background. Physiological stress responses and
stress effects on memory are at least partially genetically
determined. For example, genetic variants that code receptors
for glucocorticoids or noradrenaline have been shown to
modulate memory formation for arousing events or stress-
induced bias toward habit memory (49,128–130). Moreover,
these variants have been linked to PTSD risk in trauma survi-
vors (130). Intriguingly, recent findings indicate that a gene
related to the glucocorticoid receptor is also associated with
the success of PTSD therapy (131).

Early-Life Experiences. Early-life stress has a profound
impact on brain development and emotional memory pro-
cesses later in life. For example, stress levels shortly after birth,
or even prenatally, have been linked to altered fear learning,
reduced memory flexibility, and decreased hippocampal neu-
roplasticity during adulthood (132–135). At the same time,
early-life stress has been linked to psychopathology in adult-
hood, including anxiety disorders and PTSD (136,137).

Brain Structure. Both genetic background and early-life
experiences have a significant impact on brain maturation
and structure. In the context of stress-related mental disorders,
there has been particular focus on the hippocampus, which is
not only a key structure for memory but also a main target of
stress mediators and is critically involved in the regulation of
stress response systems (1). Longitudinal studies and studies
of monozygotic twins suggest that smaller hippocampi,
commonly observed in PTSD (138), constitute a risk factor for
rather than a mere consequence of PTSD (139,140).

Socioeconomic Position. Accumulating evidence has
demonstrated an important link between cognitive functions
and stress responses and individuals’ socioeconomic position.
For example, lower parental education has been associated
with lower hippocampal volume in children, which was
344 Biological Psychiatry February 15, 2025; 97:339–348 www.sobp.o
mediated by hair cortisol as a proxy for chronic stress levels
(141). Furthermore, blunted cortisol reactivity, another indi-
cator of chronic stress, was linked to poorer memory per-
formance (142) and increased amygdala reactivity to
emotional stimuli in children from low-income families (143).
These socioeconomic position-related changes in stress and
cognition may contribute to the higher prevalence of stress-
related mental disorders in individuals with a low socioeco-
nomic position (144).

Social Support. Social support, or its absence, plays a
crucial role in individuals’ resilience to adverse events; whereas
social support can buffer stress responses (145), social isola-
tion acts as a constant stressor (112). Recent research
revealed that the presence of a friend after a traumatic film can
mitigate aberrant memory formation, as evidenced by a
reduction in intrusive memories (146). Similarly, receiving so-
cial support in the aftermath of a trauma has been associated
with a decreased risk of developing stress-related mental
disorders (118).
CONCLUSIONS

Stress can influence memory in various ways, including
enhancing memory formation for central features of the
stressor while reducing memory for its context, impairing
memory retrieval, and diminishing memory flexibility. These
changes facilitate efficient responses to the stressor and
create a robust memory representation that can be effectively
generalized to novel threats. However, when stressors are
extreme or frequently repeated, without a sense of control,
they may lead to maladaptive memory changes, particularly in
individuals with genetic or developmental vulnerabilities and
insufficient social support.

Research on the impact of stress on memory holds promise
for the development of new approaches to treating or pre-
venting stress-related psychopathologies. Pharmacological
interventions that target glucocorticoid or noradrenaline
signaling pathways have been explored to modify dysfunc-
tional memory processes (8). More recently, new approaches
have been suggested based on insights into the neural and
cognitive mechanisms that underlie stress effects on memory.
For example, mice were re-exposed once to the trauma
context, which promoted a recontextualization of memory so
as to attenuate PTSD-like memory (147). These findings may
be translated into virtual or in sensu recontextualization ap-
proaches in patients with PTSD. In humans, anodal stimulation
of the PFC has been shown to prevent stress-induced memory
deficits (148). Furthermore, the predictability of significant
events has been manipulated to counteract the overly strong
memory formation for stressful events (149) and to make
therapeutic interventions more effective (150). The efficacy of
these pharmacological and behavioral strategies may depend
on the nature of the stressor and the individual’s background.
Understanding the mechanisms involved in the interindividual
variability in stress effects on memory is essential for devel-
oping personalized strategies to address the maladaptive al-
terations that occur along with the generally adaptive changes
in learning and memory under stress.
rg/journal
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