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Abstract  

Stressful events have a major impact on memory. In this chapter, I will discuss classic and 

more recent findings suggesting that stress may have distinct effects on different stages of 

memory – encoding, consolidation, retrieval, and reconsolidation – and that these effects are 

closely linked to the precisely timed action of hormones and neurotransmitters that are 

released in response to stress. In addition to these time-dependent changes in memory 

performance after stress, I will discuss evidence showing that stress modulates the 

engagement of multiple memory systems in a manner that facilitates rather simple but rigid 

‘habit’ memory, at the expense of cognitively more demanding forms of memory. I will 

further argue that this shift towards habit memory may be adaptive for performance under 

stress but result in rather inflexible memories. Finally, I will discuss some implications of 

stress-induced changes in memory. 
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9.9.1 Introduction 

Stressful events are ubiquitous in everyday life. They may range from the many daily hassles, 

such as getting stuck in the traffic when late, to major life events, including the death of a 

beloved one. Although clearly distinct in their intensity and long-term consequences, what 

these situations have in common is that they threaten the organism’s homeostasis, its inner 

balance (1, 2). Such threats, or stressors, trigger the release of numerous neurotransmitters, 

hormones and other neuromodulators. Through the action of these stress mediators on the brain, 

stress may exert a significant impact on a broad range of cognitive functions (3-8). 

 This chapter will focus on the impact of acute stress on memory processes. Although it 

is primarily dedicated to stress-induced changes in human memory, I will also repeatedly refer 

to findings in non-human animals because particularly studies in rodents provided critical 

insights into how stress alters memory processes; the vast majority of the human studies on 

stress and memory build on these insights. Since the impact of stress on memory depends 

critically on the activity of the body’s stress response systems, in the first part of this chapter I 

will briefly portray the central and peripheral stress response systems of the body. In terms of 

stress-induced changes in memory, I will distinguish effects on quantitative aspects of memory 

(how much is remembered) from those on the quality or nature of memory (what is 

remembered). In part two of this chapter, I will review stress effects on quantitative memory 

performance. Here, I will show that stress may have different effects on memory depending on 

the stage of memory – encoding, consolidation, retrieval or reconsolidation. In part three, I will 

summarize evidence indicating that stress may bias the engagement of multiple memory 

systems and thus affect the quality of memory. Finally, I will discuss the implications of stress-

induced changes in memory for cognitive adaptation under stress as well as for clinical and 

educational contexts.    
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9.9.2 Basics of the physiological stress response 

The stress response is characterized by a remarkable complexity. It includes a multitude of 

different stress mediators that act in concert to enable a rapid adaptation to internal and external 

demands as well as to reinstate homeostasis. Threat-related information from all sensory 

systems is conveyed to the brain. The precise nature of the stress response, however, depends 

on the type of stressor (and several additional factors (9)). For instance, physical stressors that 

involve an immediate threat to homeostasis, such as blood loss, cold, or respiratory distress, 

rapidly recruit the brainstem and hypothalamic regions. By contrast, psychological stressors 

that require interpretation by higher brain structures, such as embarrassment or deadlines, are 

channeled through limbic forebrain structures, which then provide descending input to the 

hypothalamus and brainstem nuclei (10, 11). A key structure that integrates ascending and 

descending stress signals is the paraventricular nucleus (PVN) of the hypothalamus. The PVN 

directly regulates two major stress response systems: the sympathetic nervous system and the 

hypothalamus-pituitary-adrenal (HPA) axis (Figure 1). 

 The actions of these stress response systems have classically been described as two 

temporal “waves” of stress responses. Within seconds after stressor onset, the first wave sets 

in, when the sympathetic branch of the autonomic nervous system is activated. This 

sympathetic activation represents the “fight-or-flight”-response first described by Walter 

Cannon (12) more than a century ago and includes, for instance, increases in heart rate, pupil 

dilation and respiration. Moreover, sympathetic activation triggers the release of adrenaline 

(mainly from the adrenal medulla) and noradrenaline (mainly from sympathetic nerves but also 

from the adrenal medulla). Notably, peripheral adrenaline and noradrenaline cannot cross the 

blood-brain-barrier but exert indirect effects on the brain via the vagus nerve (13), which then 

modulates the activity of noradrenergic brainstem nuclei (in particular, the locus coeruleus and 

nucleus tractus solitarius). In addition to these peripheral effects, sympathetic activation 
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increases the release of monoamines, such as noradrenaline, dopamine and serotonin, in several 

brain regions, including the amygdala, hippocampus, and prefrontal cortex (PFC), with critical 

implications for the cognitive processing of the ongoing stressor. Beyond monoamines, stress 

also induces a rapid release of a number of neuropeptides, including corticotropin-releasing 

hormone (CRH), vasopressin and oxytocin, which may all contribute to the behavioral stress 

response (9, 14). Importantly, this first wave of the stress response wanes quickly, typically 

within minutes after the stressor is over, and its effects are rather short-lived (albeit there is 

some evidence that rapid monoamine activation might also lead to sustained genomic changes, 

(15)). 

 

- Please insert Figure 1 about here – 

 

 More long-lasting stress effects are accomplished through the delayed, second wave of 

the stress response, which is closely linked to the activity of the HPA axis. This hormonal 

cascade starts when stress signals from ascending brainstem pathways or descending limbic 

inputs lead to the secretion of CRH in the hypothalamic PVN. CRH acts on the anterior 

pituitary to facilitate the release of adrenocorticotrophic hormone (ACTH), which in turn 

stimulates the synthesis and secretion of glucocorticoids (mainly cortisol in humans and 

corticosterone in rodents) from the adrenal cortex. Glucocorticoids are steroid hormones that 

can pass the blood-brain-barrier and thus directly act on the brain. They reach peak levels about 

30 minutes after the onset of a stressful event and are thought to be a driving force in stress 

effects on cognition and behavior (4, 8, 16-20).  

 Glucocorticoids exert their actions via two receptor types that differ in expression and 

affinity: mineralocorticoid receptors (MR) and glucocorticoid receptors (GR). High-affinity 
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MR are expressed mainly in the hippocampus and to a lesser extent in the amygdala and PFC, 

whereas the low-affinity GR are abundantly expressed throughout the brain (1, 21). 

Traditionally, both MR and GR were assumed to exist only as intracellular receptors mediating 

slow genomic changes by activating responsive genes, which develop after one or two hours 

but may last for several hours to even days or weeks. More recent evidence, however, 

challenged this view and showed that there is also a membrane-bound MR (and possibly also 

GR, (22)) that may induce rapid, non-genomic (i.e., gene-independent) effects on brain, 

cognition and behavior (8, 23, 24). Interestingly, the membrane-bound MR appears to have a 

lower affinity than its intracellular counterpart, which is almost fully saturated by tonic 

glucocorticoid concentrations, and is thus responsive to stress-induced increases in 

glucocorticoids (25). In light of the biphasic action of glucocorticoids via intracellular and 

membrane-bound receptors, the temporal profile of the stress response may best be 

characterized as consisting of, at least, three waves: (i) a rapid but short-lasting first wave 

involving sympathetic activation, monoamines and neuropeptides, (ii) a second wave that sets 

in within minutes after stressor onset and is based on non-genomic glucocorticoid actions, and 

(iii) a third wave that begins only hours after stressor onset, when genomic glucocorticoid 

actions have developed. Importantly, these temporal waves of the stress response appear to 

have distinct effects on brain areas critical for memory formation and retrieval (26-28).      

 

9.9.3 Stress and memory performance: how much do we remember?  

The investigation of stress effects on learning and memory has a longstanding tradition in 

animal research. First reports on the impact of stress mediators, such as adrenaline, on memory 

performance date back to the first half of the last century (29-32). In humans, research on stress 

and memory began in the early-1990s, with first studies showing that cortisol may affect 
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memory performance (33, 34). Since then, there has been an explosion in the number of studies 

investigating stress effects on human learning and memory. A key finding of these studies is 

that whether stress enhances or impairs memory depends critically on the memory stage 

affected by stress. Accordingly, I will portray the impact of stress on memory separately for 

the major stages of a memory – encoding, consolidation, retrieval, and reconsolidation. 

Because research has so far mostly focused on hippocampus-dependent episodic or semantic 

memory, I will limit the present review to this form of memory. Evidence that stress affects 

also non-hippocampal forms of memory, such as dorsal striatal memory is, however, 

accumulating, in both rodents and humans (35-40). For these memories, the direction of the 

stress effects appears to be dependent on the memory stage as well, similar to what is known 

for hippocampal memory. Moreover, beyond long-term memory, acute stress is known to have 

a significant influence on working memory. More specifically, most studies agree that stress 

disrupts working memory performance (41-45). 

 

9.9.3.1 Stress and memory encoding 

In order to investigate the impact of stress on memory, participants are typically exposed to 

either a stressor or a non-stressful control procedure. Over the past decades, several 

standardized procedures have been developed to induce stress in a laboratory setting. The most 

prominent of these procedures is the Trier Social Stress Test (TSST, (46)), a psychosocial 

stressor that mimics a job interview in which participants are required to give, while being 

videotaped, a free speech and complete a mental arithmetic task in front of a cold and non-

reinforcing panel. Another frequently used stress protocol is the Socially Evaluated Cold 

Pressor Test (SECPT; (47)), an extension of the classical Cold Pressor Test (48) by socio-

evaluative elements. Here, participants are asked to immerse their hand for three minutes into 
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ice water, while being videotaped and evaluated by a rather could and neutral experimenter. 

Both, the TSST and the SECPT are known to result in significant increases in subjective stress 

rating, autonomic nervous system activity, and cortisol (49, 50). It should be noted that an 

experience of stress is per definition associated with an increase in subjective and physiological 

arousal. The effects of emotional arousal on memory are discussed in chapter XYZ. 

Furthermore, critical interaction between stress-induced glucocorticoids and emotional arousal 

will be discussed in section 9.9.3.5. 

In several studies, healthy participants were exposed to a stressor (or control 

manipulation) shortly before performing a learning task in order to assess the impact of stress 

on memory encoding. The findings of these studies have been rather inconsistent. While some 

studies showed that stress before learning reduces subsequent recall, the integration of 

contextual features into the memory trace or late positive potentials (LPP), an EEG marker of 

selective attention (51-53), others suggested that stress prior to encoding facilitates later 

memory (54-57). For instance, one study showed that stress before learning made memories 

more resistant to distortions through misinformation (58). Furthermore, stress before encoding 

has been shown to strengthen event-related potentials implicated in enhanced memory 

formation (59, 60). Although these studies diverge with respect to the direction of the stress 

effect on encoding, many of them link the observed effect to stress-induced increases in cortisol 

(53, 61, 62). Direct evidence for cortisol-driven changes in memory comes from studies that 

manipulated cortisol pharmacologically before encoding. However, even the findings on the 

impact of elevated cortisol before learning on subsequent memory were inconsistent, with some 

studies reporting beneficial (63, 64) and others detrimental effects (53, 65). 

 How can the remarkable heterogeneity of the findings on the influence of stress (even 

when the same stress protocol was used) and cortisol on encoding be explained? Some authors 

argued that there may be gender differences in the impact of stress on memory encoding. Yet, 
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although some studies suggested differential effects of stress before learning in women 

compared to men (35, 66, 67), potential gender differences cannot explain the majority of the 

inconsistent findings, as stress effects on encoding differed also in the same gender. 

Alternatively, the emotionality of the encoded material has been suggested as a source of the 

inconsistent findings. Specifically, stress before encoding was reported to strengthen later 

memory of emotionally arousing stimuli but to impair memory for neutral material (68, 69). 

However, while several studies showed beneficial effects of stress or cortisol specifically for 

emotionally arousing material (56, 59, 66), the pattern of results was not consistent across 

studies (51, 60, 70). Finally, based on the temporal dynamics of the major stress response 

systems, in particular the sympathetic nervous system and HPA axis, it has been suggested that 

the temporal distance between stress exposure and learning may be a critical factor for the 

direction of the stress effect (71). In line with this idea, stress a few minutes before learning 

appeared to enhance memory (55, 72-74), whereas stress about 30 minutes before learning 

impaired subsequent memory (66, 72). Although the temporal distance may not account for all 

of the discrepant findings and opposite results were reported even for comparable intervals 

between stress exposure and encoding (53, 54), the temporal proximity is closely linked to 

another critical factor: the actual relatedness between stressor and learning. 

 A stressful encounter is, of course, itself a learning experience that is encoded and the 

existing evidence shows unanimously that stressful events themselves are well remembered. A 

classic rodent study conducted more than 20 years ago showed that subsequent memory for a 

water maze task can be modulated by varying the water temperature (i.e. stress level). The 

lower the water temperature (i.e. the higher the stress level), the better the memory for this 

experience (75). In line with these rodent data, human studies showed that memory for a 

stressful encounter is significantly better than memory for a non-arousing control situation (76, 

77). Even learning within the (temporal) context of a stressful encounter may boost learning 
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(55, 78), unless the stressor acts as distractor, which profoundly impairs later memory (79). 

Neuroimaging data suggest that the enhanced encoding under stress is linked to increased 

activity of visual and inferotemporal areas and, surprisingly, reduced hippocampal activity 

(78). Amygdala-hippocampal crosstalk at rest, however, appears to facilitate subsequent 

memory for events encoded under stress (80). 

 Thus, stress may have distinct effects on memory depending on the extent to which the 

stressor and learning episode overlap. In a recent study from our lab, we aimed to track the 

impact of stress on encoding across time (76). To this end, participants first underwent a 

psychosocial stressor (or control manipulation) and then went on a two-hour tour through a 

zoo. Both during the stressor and during the zoo tour, participants were wearing a camera that 

took several pictures per minute. These pictures were used in a memory test one week later, 

enabling us to test memory as a function of the temporal distance to stressor onset. Our findings 

showed enhanced memory for two time intervals (Figure 2): the stressful episode itself and a 

period about half an hour after the stressor, after cortisol levels had reached a plateau.  

 In sum, although there is a considerable inconsistency in the literature on stress and 

memory encoding, the conclusion that stress has none or at least no systematic effect on 

encoding may be premature. Studies that were directed at testing stress effects on encoding 

differed on many critical dimensions, with the emotionality of the stimulus material and the 

temporal proximity and relatedness between stressor and learning situation being just a few, so 

that these studies are hardly comparable. Moreover, some studies tested recall shortly after 

encoding, when stress response systems were still active (53, 54), which raises the possibility 

that stress affected memory retrieval in addition to or rather than encoding. Although stress 

effects on encoding cannot be disentangled from those on either consolidation or retrieval, 

depending on whether memory is tested immediately after encoding or later, research suggests 
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that material encoded under stress (or shortly after a stressful event) is typically well 

remembered.  

    

- Please insert Figure 2 about here – 

 

9.9.3.2 Stress and memory consolidation 

The effects of stress before or during encoding may reflect a combination of encoding and 

consolidation effects because stress mediators, such as cortisol, often remain elevated after 

encoding, during early consolidation. In order to isolate stress effects on memory consolidation, 

individuals need to be exposed to a stressful event shortly after encoding and at least several 

hours before retention testing. The vast majority of studies that did expose participants to a 

stressor after encoding showed, in line with evidence from rodent studies (19), that post-

encoding stress enhances subsequent memory (81-85). A recent meta-analysis of the literature 

on stress and memory confirmed the facilitating effect of stress on consolidation (86). This 

facilitating effect was closely linked to stress-induced increases in cortisol and sympathetic 

arousal (82, 87, 88). Further, a pharmacological elevation of cortisol concentrations after 

encoding has been shown to be sufficient to boost subsequent memory (89). 

 Interestingly, many studies reported enhancing stress effects specifically for the 

consolidation of emotionally arousing material ((81, 82, 85, 90); but see, for example, (91) for 

an effect on neutral material). This specificity is generally in line with the ‘tag-and-capture’ 

hypothesis, which assumes that memory traces are tagged during encoding and that tagged 

traces can later capture plasticity-related products that facilitate memory storage (92, 93). One 

recent study tested such a tagging mechanism for stress effects on consolidation and showed 

that stress-induced cortisol made memories more dependent on hippocampal and amygdala 
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activity during encoding (87). In other words, the cortisol response to stress seemed to promote 

specifically the storage of information that was considered most relevant by the organism 

during prior encoding. Moreover, one study suggested that stress enhances memory specifically 

when the stressful event occurs in the same spatial context as prior encoding (94), thus 

facilitating the relatedness or integration of stressful encounter and learning experience. 

Although such a contextual account is intriguing, previous studies showed that stress enhances 

consolidation also when experienced in a different context than prior encoding (82, 91). 

Elucidating the exact conditions that may be required for the memory enhancement to occur 

remains a challenge for future research.        

 Beyond possible contextual boundary conditions for a stress-induced consolidation 

enhancement, several studies suggested that the enhancing effects of stress on consolidation 

are gender specific. In particular, whereas stress after encoding enhanced memory in men, it 

did not affect consolidation in women (91, 95). Initial evidence further suggested that such 

gender differences may be linked to an interaction of stress with sex hormones (90). Gender 

differences in the impact of stress on consolidation may be highly relevant given differences 

between men and women in the prevalence of disorders such as posttraumatic stress disorder 

(PTSD; (96)), in which stress effects on memory formation are critical. However, further 

research is needed to show how robust the suggested gender differences in the impact of stress 

on memory consolidation are, as several studies did not report such differences (81, 84), and 

to elucidate the mechanisms that may contribute to such differences. 

 

9.9.3.3 Stress and memory retrieval 

It is commonly assumed that stress exerts opposite effects on memory consolidation and 

retrieval: while stress promotes memory consolidation, it appears to impair memory retrieval 
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(19, 20, 28, 97). Initial evidence for a stress-induced retrieval impairment was presented by a 

study in which elderly humans that underwent stressor shortly before retention testing showed 

a memory impairment relative to a non-stressful control condition (98). The interest in the 

impact of stress on memory retrieval, however, was spurred by a landmark study in rodents 

published one year later. In this study, rats were significantly impaired in their memory for a 

previously learned water maze task when exposed to a stressor before retention testing (17). 

This retrieval deficit was specifically observed if retention testing took place about 30 minutes 

after the stressor, when corticosterone reached peak levels. The critical role of glucocorticoids 

in the stress-induced retrieval impairment was demonstrated in elegant follow-up experiments. 

In particular, the stress-induced retrieval deficit disappeared when the stress-induced secretion 

of corticosterone was blocked pharmacologically with the glucocorticoid synthesis inhibitor 

metyrapone and the retrieval deficit recurred when metyrapone was combined with the 

pharmacological administration of corticosterone. These findings were successfully translated 

to humans. To date, quite a number of studies reported stress-induced retrieval impairments in 

humans (82, 84, 99-101) and several of these studies suggested that these impairments are 

particularly pronounced for the retrieval of emotionally arousing material (82, 100, 101).  

Very recently, fMRI was combined with sophisticated multivariate analysis techniques 

to elucidate how the stress-induced retrieval deficit is represented in the human brain (102). 

This study showed that stress before and concurrent with memory testing disrupts the 

relationship between hippocampal activation, reinstatement in cortical representation areas and 

memory performance. Furthermore, stress reduced the involvement of the (posterior) 

hippocampus and the recruitment of large-scale frontoparietal networks during retrieval. In line 

with findings in rodents (17, 19, 103), cortisol appeared to play a key role in the stress-induced 

retrieval impairment in humans. The retrieval impairment after stress was particularly 

pronounced in individuals showing a pronounced cortisol response to stress (82, 101, 104) and 
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a pharmacological administration of cortisol was sufficient to produce this retrieval deficit 

(105, 106). Evidence from a study using positron emission tomography (PET) indicated that 

cortisol exerts its detrimental influence on memory retrieval by reducing retrieval-related 

activation in medial temporal lobe areas (107).  

Moreover, stress appears to unfold its influence on memory retrieval in a time-

dependent manner, closely linked to the action of cortisol. A series of experiments varied the 

time interval between stress exposure and recall testing in order to unravel the role of the 

different temporal waves of the stress response (see section 9.9.2) in the modulation of memory 

retrieval. Interestingly, when retrieval took place under stress, before cortisol levels were 

elevated, and the testing situation was the source of stress, stress did not impair retrieval and 

the sympathetic stress response tended even to facilitate retrieval performance (108). However, 

if retention testing took place 25 minutes later, when cortisol levels were already significantly 

increased, and out of the context of the stressful encounter, stress impaired retrieval and this 

impairment was directly correlated with the magnitude of the cortisol response (108). 

Moreover, when the interval between stress exposure and retention testing was extended to 90 

minutes, when cortisol levels had returned to baseline but genomic cortisol actions presumably 

developed, there was a retrieval impairment that was even stronger than the deficit observed 

after 25 minutes, when non-genomic cortisol actions prevailed (109). Together these data 

provide striking evidence for a role of cortisol in the stress-induced impairment in memory 

retrieval and this impairment may last longer than the acute rise in cortisol. At the same time, 

the early sympathetic nervous system response to stress (108) or stress without significant 

increase in cortisol (104) might even facilitate memory retrieval. 

 Although the predominant view holds that stress or cortisol administration impairs 

memory retrieval, it should also be noted that several studies did not find such an impairment 

but reported even enhanced memory retrieval after stress (73, 83, 110-113). The source of these 
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discrepant findings remains still rather unclear; specific characteristics of the tested samples, 

the magnitude of the stress response or other methodological differences are likely candidates 

to explain these differences. Moreover, there is initial evidence that the relationship between 

the learning and testing situations may have a significant impact on stress-induced changes in 

memory retrieval. For instance, it is well known that if the retrieval context is congruent with 

the encoding context it may provide retrieval cues that promote memory performance (114-

116). Thus, it might be predicted that the congruency between the learning and testing 

situations may attenuate the stress-induced retrieval deficit. Indeed, when the learning context 

was enriched by a specific odor and testing took place in the same (spatial) context with this 

odor present, the stress-induced retrieval deficit was completely abolished (117). Likewise, it 

has recently been shown that retrieval practice after encoding, known to boost subsequent 

memory (118, 119), may protect against detrimental effects of stress on memory retrieval (120) 

but see (102) for a study that did not find a protective effect of memory strength against 

disruptive effects of stress on retrieval. These findings point to the intriguing possibility that 

stress-induced retrieval deficits can be prevented by leveraging psychological mechanisms 

known to aid memory.     

 

9.9.3.4. Stress and post-retrieval processes 

Stress and cortisol may not only impair the immediate retrieval but can also affect the long-

term recall of memories retrieved under stress (121, 122). These findings suggest that stress 

induces not only a transient retrieval impairment but, given that stress mediators such as 

cortisol remain often elevated long after retrieval, may also affect post-retrieval processes 

related to subsequent memory. Over the past two decades, evidence has accumulated to suggest 

that memories re-enter a labile state again after their retrieval, from which they need to be 
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stabilized anew during a process call reconsolidation (123-129). Critically, it is assumed that 

reactivated memories can be modified during reconsolidation and several studies in rodents 

and humans suggested that stress mediators, such as glucocorticoids and catecholamines, may 

be involved in the post-reactivation stabilization or modification of memories (130-135).  

 Accordingly, several studies aimed at investigating the impact of stress on memory 

reconsolidation and hence exposed individuals to stress shortly after memory retrieval. These 

studies indicated that stress may indeed alter memory after retrieval, i.e. the proposed 

reconsolidation process. The direction of this effect, however, is still debated: whereas some 

studies suggested that post-retrieval stress impairs reconsolidation and long-term memory 

(136-139), others suggested that stress enhances reconsolidation, similar to its impact on initial 

consolidation (140-144). To date, the factors that contribute to these inconsistencies remain 

elusive. Potential stress effects on reconsolidation, however, may have tremendous 

implications, in particular for clinical contexts. Reconsolidation-based treatments might 

provide a unique opportunity to alter unwanted memories, for instance in addiction or PTSD 

(145-148). Furthermore, trauma reactivation, an integral part of therapeutic interventions, is 

often experienced as highly stressful by PTSD patients, which may have considerable effects 

on subsequent trauma memory. Given these far-reaching implications of stress-induced 

changes in post-retrieval reconsolidation, understanding the mechanisms that give rise to 

stress-related changes in reconsolidation as well as the factors contributing to the present 

heterogeneity in the findings is important.  

 

9.9.3.5. Stress and memory performance: mechanistic insights 

In sum, it is by now widely accepted that stress may have opposite effects on different stages 

of memory. In particular, stress appears to enhance memory consolidation but to impair 
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memory retrieval. Although stress effects on consolidation and retrieval are opposite, they 

seem to share a common mechanism. Elegant studies in rodents showed that stress effects on 

both memory consolidation and retrieval require concurrent activity of glucocorticoids and 

noradrenaline in the basolateral amygdala (BLA), which then modulates memory processes in 

other brain areas such as the hippocampus (103, 149). For instance, it has been shown that the 

pharmacological blockade of noradrenergic arousal in the BLA or the inactivation of the BLA 

eliminates glucocorticoid effects on memory (150, 151). Likewise, glucocorticoids are 

ineffective in rats that are habituated to the testing context (152) but glucocorticoid effects can 

be reinstated by the parallel administration of the α2-adrenceptor antagonist yohimbine, which 

increases noradrenergic stimulation (153).  

While this memory modulation model is mainly based on rodent data, several findings 

in humans support this model. First, stress effects on both consolidation and retrieval seem to 

be particularly pronounced for emotionally arousing material that is associated with increased 

noradrenergic activity (81, 101). Second, stress-induced cortisol enhanced memory 

consolidation only when the rise in cortisol was paralleled by subjective arousal (154). Third, 

pharmacological studies demonstrated that the effects of stress and glucocorticoids can be 

abolished by the β-adrenoceptor antagonist propranolol (111, 155), suggesting the stress and 

glucocorticoid effects require simultaneous noradrenergic activation in humans as well. 

Finally, an fMRI study indicated that participants with a high cortisol response to stress showed 

higher amygdala activity while viewing emotionally arousing pictures than participants 

showing a lower cortisol response (156). 

 The critical role of the glucocorticoid-noradrenaline interaction for stress effects has 

been established over the past 25 years. More recently, however, evidence has been 

accumulated to suggest that this model might need a modification by incorporating the 

endocannabinoid system as an important player. The endocannabinoid system is a lipid 
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signaling system that modulates neurotransmitter release in the brain (157). Endocannabinoid 

receptors are expressed in brain areas critical for stress and memory, including the amygdala 

and the hippocampus (158). Accordingly, several studies implicated endocannabinoids in stress 

response and the modulation of learning and memory (159-161). Most importantly, the 

endocannabinoid system, in interaction with glucocorticoids, has been suggested to modulate 

noradrenergic circuits and hence memory processes (159, 161). For instance, it has been shown 

that intra-BLA injections of an endocannabinoid receptor antagonist blocked the enhancing 

effect of systemic glucocorticoid injections on consolidation, suggesting that endocannabinoid 

signaling in the BLA is required for glucocorticoid effects on consolidation (162). Moreover, 

blockade of endocannabinoid receptor activity within the BLA was shown to completely 

prevent glucocorticoid interactions with the noradrenergic system in regulating memory 

consolidation (163). Further evidence indicated that the effect of endocannabinoids is critically 

dependent on the arousal level of the testing conditions, with high arousal conditions being 

necessary for the endocannabinoid effects (164). Another study provided direct evidence that 

endocannabinoids play a role in regulating glucocorticoid effects on noradrenergic activity that 

results in impaired retrieval (165). Based on these data, a model has been proposed in which 

glucocorticoids bind to membrane-bound receptors in the BLA, which in turn activate a G-

protein cascade leading to the synthesis of endocannabinoids. Endocannabinoids may then 

inhibit the release of GABA, which disinhibits noradrenaline release, resulting in increased β-

adrenoceptor stimulation linked to both enhanced consolidation and impaired retrieval (166).  

 Testing this model in humans is complicated by the fact that pharmacological 

manipulations of the endocannabinoid system are not safe in humans (160, 167). However, a 

recent study used a behavioral genetics approach to target the role of endocannabinoids in stress 

effects on human memory (168). This study genotyped healthy participants for a polymorphism 

of the gene coding the endocannabinoid CB1 receptor and exposed then to a stressor or control 
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manipulation before they encoded neutral and emotionally arousing stimuli in the MRI scanner. 

Memory for those stimuli was tested 24hrs later. The results of this study showed that memory 

performance correlated with the activity of and connectivity between hippocampus and 

amygdala in stressed participants, however, depending on the CB1 receptor polymorphism.  

 It is by now widely accepted that stress effects on memory rely on an interaction of 

glucocorticoids and noradrenergic arousal (modulated, most likely, by endocannabinoids). 

However, how can we explain the opposite effects of stress on memory consolidation and 

retrieval? And why are the stress effects on memory encoding so heterogeneous? These 

questions are addressed by another model, which assumes that stress effects on memory depend 

critically on whether stress is experienced in the context of the learning episode or not (4). 

Stress would facilitate learning when it is experienced in the context and around the time of the 

event that needs to be remembered. Learning out of the context of the stressful encounter, 

however, would impair subsequent memory. Moreover, it is assumed that stress would impair 

cognitive processes that are not directly relevant for the ongoing stressor, such as the retrieval 

of unrelated material. These differential effects of stress were linked to the different temporal 

waves of the physiological stress response (see section 9.9.2.). Specifically, catecholamines 

and rapid, non-genomic actions of glucocorticoids via membrane-associated receptors were 

thought to facilitate learning and memory. The delayed, genomic glucocorticoid actions were 

assumed to increase the threshold for mnemonic processing and hence to impair both the 

encoding of new information and the retrieval of unrelated material. Support for this model 

comes from neurophysiological data showing that both noradrenaline and rapid glucocorticoid 

actions may facilitate synaptic plasticity processes (169-172), whereas delayed glucocorticoid 

actions impair plasticity (173-175). Furthermore, this model is in line with rodent and human 

data suggesting that memory is typically enhanced for the stressful episode itself (75-77) as 

well as for events encoded shortly after stress (72, 73), when catecholamine and early 
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glucocorticoid actions prevail. Studies that elevated glucocorticoid concentrations at different 

time points provided further direct evidence for distinct effects of rapid compared to slow 

glucocorticoid actions. As predicted by the model, glucocorticoid administration several hours 

before testing reduced task-related activity in the amygdala and hippocampus (176, 177). 

Further behavioral evidence showed that a glucocorticoid increase shortly before a task 

impaired the contextualization of memories and left working memory unaffected, whereas 

glucocorticoid elevations hours before testing enhanced both of these functions (178, 179). 

Moreover, stress effects on memory retrieval appeared to be critically dependent on whether 

sympathetic arousal or non-genomic or genomic glucocorticoid actions were predominant at 

the time of retention testing (108, 109). Time-dependent effects of glucocorticoids were also 

reported in a study that assessed changes in hippocampal and amygdala activity after cortisol 

injection. Here, cortisol led to a rapid rise followed by a delayed decrease in hippocampal and 

amygdala activity (180). Beyond time-dependent changes in the activity of single brain areas, 

it has also been suggested that stress induces a reconfiguration of large-scale brain networks 

(181). In particular, stress was thought to rapidly favor a salience network, at the expense of an 

executive control network and that the preferential recruitment of these networks reverses after 

stress subsides and genomic glucocorticoid actions have developed (26).   

 These two models are not mutually exclusive but the proposed mechanisms are assumed 

to operate hand in hand (27). For instance, glucocorticoids and noradrenaline may enhance 

inhibitory avoidance memory in rats (182), but they do so only when these stress mediators 

rise at about the same time. If glucocorticoids rise considerably earlier than noradrenaline, the 

memory enhancing influence of noradrenaline is suppressed (183). Based on these prior 

models, an integrative model has been proposed that distinguishes two modes of mnemonic 

processing during and after stress: a memory formation mode and a memory storage mode 

((28); Figure 3). According to this model, rapid catecholamine and non-genomic glucocorticoid 
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actions interact in the BLA, which then shifts other brain areas, including the hippocampus and 

PFC, into a ‘memory formation’ mode. These BLA-mediated effects are complemented by 

direct effects of stress mediators on the hippocampus and PFC. In the memory formation mode, 

perception, attention, encoding, and the early consolidation of ongoing events are enhanced. 

The cognitive capacities of the organism are directed at coping with the current stressor and its 

storage into memory. Competing cognitive operations, such as the retrieval of unrelated 

material, are suppressed. As time after the stressful event proceeds, the rather short-lived 

catecholamine activity returns to baseline and the delayed, genomic glucocorticoid effects 

develop. In particular the latter shift the organism into a memory storage mode. In this mode, 

the threshold for processing stressor-unrelated information is increased, thus protecting the 

memory of the stressful episode itself from interference.  

 

- Please insert Figure 3 about here – 

 

9.9.4 Stress and the modulation of multiple memory systems: what do we remember? 

For more than two decades, research on stress and memory focused primarily on stress-induced 

changes in quantitative performance, expressed for example as number of items recalled or 

latencies to a certain goal location, within a single memory system, mainly the hippocampus. 

Memory, however, is not a single entity. There are multiple memory systems that differ with 

respect to the underlying neural substrate, the information processed, and the mode of operation 

(184-187). These memory systems are often active in parallel and process information 

simultaneously (187-189). Accumulating evidence suggests that stress may have a critical 

impact on the preferential engagement of these memory systems. In particular, it has been 

demonstrated across tasks and species that stress favors rather simple but rigid (‘habitual’) 
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forms of memory, at the cost of flexible but cognitively more demanding (‘cognitive’) forms 

of learning and memory (8, 190-195). By modulating the engagement of multiple memory 

systems, stress may – in addition to its effects on quantitative memory performance – affect 

the nature of learning and memory, i.e. how we approach a task, which strategies we use during 

learning and what we remember from past experiences. 

 

9.9.4.1 Stress and multiple memory systems: spatial navigation 

Very first evidence for a stress-induced shift in the balance of multiple memory systems came 

from a landmark study in rodents almost 20 years ago (196). In this study, rats were trained in 

a fixed location-visible platform water maze task that could be acquired by a hippocampus-

based spatial memory system and a dorsal striatum-based stimulus-response (S-R) memory 

system. The chosen strategy was revealed in a test trial, in which platform and cue were 

relocated. Compared to non-stressed controls, rats exposed to a stressor before training used 

the S-R memory system significantly more often, at the cost of the spatial memory system. 

This study provided the first evidence that stress may bias the relative engagement of multiple 

memory systems during learning. Follow-up experiments showed that systemic or intra-

amygdala injections of anxiogenic drugs are sufficient to produce this effect (197, 198). 

Further, glucocorticoids were shown to favor S-R over spatial learning in a circular hole board 

task (199). 

 These initial findings in rodents were subsequently translated to humans. In particular, 

one study exposed healthy participants to a psychosocial stressor or a control manipulation 

shortly before they were trained to find a win-card in a wooden 3D model of a room (200). 

Critically, the location of this win-card could be learned through its association with a single 

proximal cue (S-R strategy) or by using the relationship between multiple room cues (spatial 
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strategy). Same as in rats, stress favored S-R learning at the expense of spatial learning. To 

elucidate the involved brain mechanisms, a subsequent study combined fMRI with a virtual 

spatial learning task that allowed distinguishing hippocampus-dependent spatial from dorsal 

striatum-dependent S-R learning (201). This study replicated the stress-induced bias towards 

more S-R learning and showed that the stress-induced increase in cortisol was associated with 

enhanced functional connectivity between amygdala and dorsal striatum. 

 While these studies induced stress before learning, rodent data suggested that stress may 

modulate the engagement of multiple memory systems also at retrieval. Specifically, the 

administration of an anxiogenic drug before a retention test for a dual-solution water maze task 

biases memory towards the S-R system as well (202). Thus, stress seems to affect not only 

which memory system is used during task acquisition but also which of several parallel 

memory traces is reactivated and guided behavior during retrieval. Moreover, there is some 

evidence that – beyond the effect of acute stress – chronic stress may favor S-R over spatial 

memory processes (203). Likewise, stress during critical periods of brain development may 

have a critical impact on the preferential engagement of spatial and S-R memory in adulthood 

(204, 205).    

 

9.9.4.2 Stress and multiple memory systems: classification learning 

During (probabilistic) classification learning, individuals have to learn how to classify stimuli 

based on trial-by-trial feedback. Converging lines of evidence from fMRI studies in healthy 

participants and neuropsychological studies in patients with medial temporal lobe or basal 

ganglia dysfunctions indicate that classification learning can be supported by a hippocampus-

based and a dorsal-striatum-based memory system (188, 206-209). There is even some 

evidence to suggest that these systems compete for control of learning (188), raising the 
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question which system gets the upper hand. Accumulating evidence suggests that stress may 

be a factor that biases hippocampal and dorsal striatal systems during classification learning. 

A first study testing the impact of stress on the control of classification learning showed that 

stress prior to learning reduced explicit task knowledge and biased learning strategies from 

hippocampal towards dorsal striatal strategies (210). This stress-induced shift in ‘systems’ 

learning was paralleled by a reduction in hippocampal activity. Moreover, fMRI data indicated 

that classification performance was correlated with hippocampal activity in non-stressed 

controls but with dorsal striatal activity in stressed participants, further suggesting that stress 

shifted the control of learning from the hippocampus to the dorsal striatum. Subsequent studies 

replicated this basic pattern of results and further pointed to the amygdala as a mediator of this 

stress-induced shift (211, 212). Specifically, stress seemed to increase amygdala connectivity 

with the dorsal striatum, whereas it decreased amygdala connectivity with medial temporal 

lobe structures (211, 212). 

 Notably, not all individuals are equally likely to demonstrate a shift from hippocampal 

to dorsal striatal learning and memory after stress. First evidence suggests that genetic variants 

of the glucocorticoid and noradrenergic system may explain at least part of this variance and 

affect hippocampal and striatal activity as well as the connectivity of these regions with the 

amygdala during classification learning (211, 213). Recently, a study in humans tested the 

impact of glucocorticoids and noradrenergic arousal on the preferential recruitment of 

hippocampal and striatal memory systems during retrieval in a classification learning task 

(214). This study showed, in line with previous evidence (215), a practice-related bias from 

hippocampal to dorsal striatal learning strategies which was, in placebo controls, even more 

pronounced after a night of sleep (216). Administration of hydrocortisone or the α2-

adrenceptor antagonist yohimbine, however, abolished this further shift towards dorsal striatal 

learning and thus led to even more hippocampal memory relative to placebo. Although the 
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direction of this stress (hormone) effect was somewhat surprising, these findings suggest that 

stress hormones may not only affect the memory system engaged during acquisition but also 

the control of memory retrieval, in line with rodent data from the domain of spatial navigation.   

 

9.9.4.3 Stress and multiple memory systems: other forms of learning 

Beyond spatial navigation and classification learning, there are several other task domains that 

can be supported, at the same time, by multiple memory systems. For instance, in instrumental 

learning and memory a PFC-dependent, goal-directed system can be distinguished from a 

dorsolateral striatum-dependent habit system. Whereas the goal-directed system acquires the 

causal relationship between an action and an outcome, the habit system learns associations 

between responses and preceding stimuli, independent of the outcome engendered by the 

response (217, 218). A conceptually related distinction is that between model-based and model-

free learning (219). Similar to the stress-induced shift from hippocampal to striatal control in 

spatial navigation and classification learning, stress appears to have a decisive effect on which 

of these different learning and memory systems guides behavior. In particular, it has been 

demonstrated repeatedly in healthy humans that stress may favor habitual responding, at the 

expense of goal-directed control (220-222). These findings are very well in line with rodent 

data showing a similar shift after either acute or chronic stress (223, 224). The stress-induced 

bias towards habitual responding appears to be present already in infants (225), suggesting that 

this effect may occur very early in life. Further studies suggested that stress favors habits in 

particular in individuals showing a pronounced cortisol response to stress (226), as well as in 

those with a low baseline working memory capacity (227, 228). While these studies exposed 

individuals to stress before acquisition, one study stressed participants after acquisition, shortly 

before the critical test of goal-directed versus habitual control of performance and reported a 
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very similar bias towards habitual responding (229). This finding suggests that stress may 

affect not only the mode of task acquisition but also the expression of instrumental behavior. 

 In another form of conditioning - classical fear conditioning - an unconditioned stimulus 

may be associated with another stimulus or with the context in which learning takes place (i.e. 

the conditioned stimulus), corresponding to cue-dependent and context-dependent 

conditioning, respectively. While cue-dependent fear conditioning relies mainly on the 

amygdala, context-dependent fear learning also depends on the hippocampus (230, 231). 

Recently, stress has been shown to modulate the balance of cued and contextual fear learning 

in a virtual task that allowed both forms of fear conditioning (232). More specifically, stress 

prior to fear learning in this task completely abolished contextual fear learning and made cue-

dependent fear learning more resistant to extinction, even when the conditioned stimulus was 

relocated to another, previously safe context. Similarly, there is evidence that stress may 

strengthen amygdala-dependent delay conditioning but impair hippocampus-dependent trace 

conditioning and that this change in conditioning is linked to reduced hippocampal activity 

(233). 

 Together, these findings provide strong evidence that stress promotes, across tasks and 

domains of learning and memory, a shift from more flexible but cognitively demanding forms 

of learning and memory to simpler but more rigid ones ((8, 234); Figure 4). 

       

- Please insert Figure 4 about here – 
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9.9.4.4 Stress and multiple memory systems: mechanistic insights 

As for stress effects on performance within a single memory systems, there also is strong 

evidence for a critical involvement of glucocorticoids in driving stress-induced changes in the 

engagement of multiple memory systems (199, 223, 226, 232, 235), although the relationship 

between glucocorticoid activity and memory bias may not necessarily be linear (236, 237). 

These rapid glucocorticoid effects appear to be mediated by the membrane-associated MR (8). 

Pharmacological blockade of the MR abolished the stress-induced shift from hippocampal to 

dorsal striatal memory in both rodents and humans (199, 238). Further, a haplotype linked to 

enhanced expression of the MR appeared to facilitate the stress-induced shift from ‘cognitive’ 

to ‘habitual’ control of classification learning (213).  

Glucocorticoids, however, do not act in isolation. Increased noradrenergic activation 

may similarly alter the balance of multiple memory systems (197, 202, 216) and the stress-

induced shift towards ‘habitual’ memory is not only modulated by an MR-related gene variant 

but also by a polymorphism of the gene coding the α2-adrenoceptor (211). In rats, the 

glucocorticoid-induced shift towards habit memory was abolished by a parallel injection of a 

β-adrenergic receptor antagonist (239), suggesting that glucocorticoids require concurrent 

noradrenergic activity to unfold their effects. The idea that stress effect on the modulation of 

multiple memory systems necessitate simultaneous glucocorticoid and noradrenergic activity 

is also supported by studies on the impact of stress on the control of human instrumental 

learning. In these studies, the β-adrenergic receptor antagonist propranolol blocked the stress-

induced shift from goal-directed to habitual control of learning (221), whereas the combined 

administration of hydrocortisone and the α2-adrenoceptor antagonist yohimbine, which leads 

to increased noradrenergic stimulation, was sufficient to provoke this shift (240, 241). 
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 Glucocorticoids and catecholamines may modulate the brain areas involved in 

‘cognitive’ and ‘habitual’ forms of learning and memory in opposite directions. For instance, 

stress may increase dorsal striatal activation and decrease hippocampal activation during 

classification learning (210, 211, 238). Likewise, combined hydrocortisone and yohimbine 

administration reduced prefrontal activity associated with goal-directed learning in humans 

(241) and glucocorticoid injections directly into the dorsolateral striatum were sufficient to 

promote habit memory in rats (235). The actions of stress mediators directly on areas such as 

the dorsal striatum, hippocampus and PFC may facilitate a shift towards ‘habitual’ memory in 

two ways, by directly strengthening habitual memory and by releasing habit memory from the 

inhibitory control of ‘cognitive’ systems (190, 242, 243). 

 In addition to these direct stress effects on brain areas critical for ‘cognitive’ or 

‘habitual’ memory, there is evidence for a modulatory role of the amygdala.  As noted in section 

9.9.3.5, a modulatory role of the amygdala in stress effects on memory performance is well 

established (103, 153). Rodent studies that injected anxiogenic drugs directly into the amygdala 

and observed a shift from ‘cognitive’ to ‘habit’ memory suggested a similar role of the 

amygdala in the stress-induced modulation of multiple memory systems (197). In line with 

such an involvement of the amygdala, several fMRI studies showed that stress facilitates 

amygdala connectivity with the dorsal striatum and, at the same time, decreases amygdala 

crosstalk with the hippocampus and adjacent areas (201, 211, 238). Interestingly, these 

opposite changes in connectivity with the amygdala were particularly sensitive to the 

pharmacological blockade of the MR (201, 238). Together, these findings suggest that (i) the 

amygdala may orchestrate the engagement of multiple memory systems under stress, and (ii) 

this amygdala modulation is driven by glucocorticoids acting via the MR, presumably in 

interaction with adrenergic arousal.   
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 In terms of the mechanisms underlying stress effects on the relative balance of multiple 

memory systems, it is important to note that most studies focused on a time interval between 

stress and learning (or retrieval) when cortisol levels peaked. Whether there are time-dependent 

effects of stress, known to be highly relevant for stress effects on the formation and retrieval 

of hippocampal memory, is currently unclear. 

  

9.9.4.1 Stress and multiple memory systems: consequences for performance 

A particularly intriguing finding in the research on the stress-induced modulation of multiple 

memory systems is that the shift towards ‘habitual’ forms of memory goes along with fully 

intact memory performance. Stressed subjects that shifted towards habit memory were 

comparable to non-stressed controls in their classification learning performance or latency to 

find a goal location (196, 199, 200, 210, 211). Severe impairments, however, were observed in 

individuals who kept using ‘cognitive’ memory systems despite stress or in which the shift 

towards habit memory was pharmacologically blocked (199, 238). This pattern of results points 

to the fascinating possibility that the bias towards ‘habitual’ memory may be highly adaptive 

to rescue performance under stress (8, 192). If, however, the shift from ‘cognitive’ towards 

‘habit’ memory is successful and performance remains unaffected, what are the behavioral 

consequences of this stress-induced shift? 

 It is commonly assumed that ‘cognitive’ memory is flexible and allows a transfer of 

knowledge to novel situations, whereas ‘habit’ memory is characterized by its rigidity (184, 

186). Given this assumption, does the rescue of memory performance under stress come at the 

cost of the flexibility of memory? Early studies suggested that stress results in more gist-like 

memory representations that lack specificity (244). Similarly, both stress and the rapid action 

of glucocorticoids have been shown to impede the integration of contextual details into the 
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memory trace (52, 179). More direct evidence for the idea that stress creates rather inflexible 

memories comes from a study that used the famous misinformation paradigm (245) to test 

whether stress affects the incorporation of new (in this case, misleading) information into an 

existing memory (246). In this study, stress ‘protected’ memory from biases through 

misinformation, which might point to a reduced capacity to update memories in light of new 

information (alternatively, the reduced misinformation effect might be due to impaired 

encoding of the misleading information). Furthermore, the generalization across past 

experiences has been proposed to be a memory process that is particularly sensitive to the 

functioning of the ‘cognitive’ hippocampus-based system (247, 248). Recent evidence shows 

that stress or increased noradrenergic arousal may disrupt this generalization capacity (249, 

250). Finally, a series of experiments suggested that stress may interfere with the integration 

of new information into existing knowledge. More specifically, it is well known that prior 

knowledge may promote the encoding and retrieval of related material, an effect referred to as 

schema-based memory (251, 252). Stress or glucocorticoid administration has been shown to 

reduce individuals’ ability to benefit from prior knowledge during learning (253). Subsequent 

fMRI studies linked this deficit to reduced hippocampal activity and difficulties in the 

separation of brain networks implicated in the processing of schema-congruent and novel 

information, respectively (254, 255).   

 In sum, these studies suggest that – beyond the well-known enhancement of memory 

formation and impairment of retrieval – stressful events may alter the nature and flexibility of 

memory (256). This inflexibility may at least partly be owing to a shift from ‘cognitive’ to 

‘habitual’ control of memory.     
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9.9.5 Memory and stress: implications and conclusion 

Research on the modulation of memory started more than a century ago, with the famous 

studies of Lashley and colleagues in rodents (31). Based on this influential work, other 

researchers began to investigate the role of stress mediators, such as catecholamines, in 

memory formation (30). Human research on stress and memory began only relatively recently, 

about 30 years ago. Since then, considerable progress has been made in understanding to what 

extent stressful events may alter memory processes and which mechanisms are involved in 

these effects. Key insights, provided by rodent and human studies, were that stress may have 

different, even opposite effects on different memory stages (in particular, stress may enhance 

consolidation but impair retrieval; (17, 19)) and that stress effects are due to the concerted 

action of glucocorticoids and noradrenergic arousal (103, 149). Further, there are timing-

dependent differences in the impact of stress related to the temporal profile of action of major 

stress mediators, with stress within the context of learning enhancing memory formation and 

stress out of the learning episode impairing memory formation (4, 27). Such stress effects are 

not limited to hippocampus-dependent memory but were shown to occur in other memory 

systems, such as the dorsal striatum, as well (36, 38). Beyond changes in a single memory 

system, stress was further shown to induce a reconfiguration of large-scale brain networks (26, 

181) which may set the stage for a shift from ‘cognitive’ to ‘habitual’ forms of memory (8, 

234). This bias towards ‘habit’ memory - which was shown in spatial navigation, classification 

learning, instrumental learning and Pavlovian fear conditioning - may change the nature of 

learning and memory, reflected, for instance, in a reduced capacity to integrate contextual 

details into the memory trace, to integrate new information with existing memories or to 

generalize experiences to new situations (256). 

 All of these stress-induced changes in memory may be, in general, highly adaptive, 

facilitating coping with the ongoing stressor as well as the preparation for similar events in the 
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future. For instance, the enhanced consolidation after stress creates lasting memories for the 

stressful encounter, which may be beneficial for coping with similar future stressors. The 

stress-induced retrieval deficit for stressor-unrelated events, on the other hand, may reduce 

distraction from the ongoing event. Similarly, the preferential use of well-established habits 

and routines may save cognitive resources and promote performance under stress. However, 

although being generally adaptive, these stress-induced changes may come at the cost of the 

flexibility of memory and have significant implications for several applied contexts. Stress, for 

instance is highly prevalent in educational contexts and may result in retrieval deficits during 

examinations, a decreased ability to link elements of knowledge or to a deficit in transferring 

knowledge to new contexts (257). Moreover, stress-induced changes in memory may play a 

prominent role in several stress-related psychopathologies, including major depression, anxiety 

disorders, addiction or PTSD. For example, the overly strong memory for traumatic events, a 

hallmark feature of PTSD, has been related to an over-consolidation due to the excessive 

release of stress hormones during the trauma (258) or to building strong associations between 

single trauma-related cues and fear (192, 194). 

 In the face of these far-reaching consequences, it is crucial to elucidate the mechanisms 

underlying the impact of stress on memory. The past decades have seen quite some progress in 

our understanding of the mechanisms involved in stress effects on memory and first attempts 

have been made to translate these mechanistic insights to the clinic (for a review, see (20)). For 

instance, leveraging the detrimental effect of glucocorticoids on memory retrieval, 

hydrocortisone administration has been shown to reduce indices of trauma memory in PTSD 

patients and subjective fear in patients with spider or social phobia (259, 260). However, 

despite the considerable progress in the research on stress and memory over the past decades, 

there are still several inconsistencies in the literature that are difficult to explain (e.g. regarding 

stress effects on encoding) and several puzzling questions still need to be addressed. Recently, 
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several new biological players have been introduced to the field of stress and memory. In 

particular endocannabinoids were suggested to be an important ingredient in stress effects on 

memory (20, 163, 165) and a prediction error signal was proposed as a cognitive mechanism 

contributing to altered memory for aversive events (261, 262). These and other developments 

to come may promise to further enhance our understanding of exactly how stressful events 

change our memories.      
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Figures 

 

Figure 1: Physiological response to stressful events. Within seconds after the onset of a 

stressful encounter, dopamine, serotonin and noradrenaline are released in the brain. Moreover, 

the activation of the sympathetic nervous system, triggered by the hypothalamus, results in the 

secretion of adrenaline and noradrenaline from the adrenal medulla. In addition, the 

hypothalamus activates the hypothalamus-pituitary-adrenal axis, leading the release of 

corticotrophin releasing hormone (CRH), which stimulates the release of the 

adrenocorticotrophic hormone (ACTH) from the pituitary. ACTH, in turn, triggers the 

secretion of glucocorticoids (mainly cortisol in humans) from the adrenal cortex. Through 

binding to mineralocorticoid receptors (MR) and glucocorticoid receptors (GR), 

glucocorticoids may exerts rapid, non-genomic and slow, genomic actions.     
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Figure 2: Study tracking the impact of stress on memory formation across 2 hours. (A) 

Participants were first exposed to a psychosocial stressor (or control manipulation) and then 

went on a two-hour tour through a zoo. During the experimental treatment and the tour through 
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the zoo, pictures were taken by a camera with a high frequency. One week later, participants’ 

recognition memory for the scenes encoded during and in the aftermath of the stressor was 

tested. (B) The stress exposure resulted in a pronounced cortisol increase. (C) Memory 

performance was enhanced, relative to controls, for the stressful event itself and for scenes 

encoded after the stress-induced cortisol increased had reached a plateau. (D) This latter 

enhancement was directly associated with the magnitude of the cortisol response. Modified, 

with permission, from (76).  
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Figure 3: Integrative model of the impact of stress on memory process in the hippocampus 

(and, most likely, other brain areas). Rapid catecholamine and non-genomic glucocorticoid 

effects interact in the basolateral amygdala to shift the hippocampus (and, presumably, other 

areas such as the dorsal striatum) into a ‘memory formation’ mode. During this memory 

formation stage, the processing of events present around the time of the stressful experience is 

facilitated, whereas other cognitive operations such as memory retrieval or the encoding of 

events that are unrelated to the stressor are suppressed. With time, non-genomic glucocorticoid 

actions become active which promote a ‘memory storage mode’ that reduces interference with 

memory consolidation by suppressing the encoding of new information. NA – Noradrenaline; 

NTS – Nucleus tractus solitaries; LC – Locus coeruleus. Reproduced, with permission, from 

(234). 
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Figure 4: Stress-induced modulation of multiple memory systems. Circles represent 

hypothetically available cognitive and neural resources, respectively. Left: At rest, resources 

are predominantly allocated to the hippocampus and the prefrontal cortex, allowing executive 

control processes, goal-directed actions, and cognitively more demanding types of learning and 

memory (‘cognitive’ memory). Right: Stress induces, most likely through the MR, a shift in 

resource allocation towards the amygdala and the dorsal striatum, supporting increased 

vigilance and more efficient ‘habit’ learning. At the same time, less resources are available for 

cognitively more demanding processes mediated by the hippocampus or the prefrontal cortex 

under stress. Figure modified, with permission, from (8). 

 


